Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3598, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678049

RESUMEN

Organic room temperature phosphorescence (RTP) has significant potential in various applications of information storage, anti-counterfeiting, and bio-imaging. However, achieving robust organic RTP emission of the single-component system is challenging to overcome the restriction of the crystalline state or other rigid environments with cautious treatment. Herein, we report a single-component system with robust persistent RTP emission in various aggregated forms, such as crystal, fine powder, and even amorphous states. Our experimental data reveal that the vigorous RTP emissions rely on their tight dimers based on strong and large-overlap π-π interactions between polycyclic aromatic hydrocarbon (PAH) groups. The dimer structure can offer not only excitons in low energy levels for visible-light excited red long-lived RTP but also suppression of the nonradiative decays even in an amorphous state for good resistance of RTP to heat (up to 70 °C) or water. Furthermore, we demonstrate the water-dispersible nanoparticle with persistent RTP over 600 nm and a lifetime of 0.22 s for visible-light excited cellular and in-vivo imaging, prepared through the common microemulsion approach without overcaution for nanocrystal formation.

2.
Macromol Rapid Commun ; 44(23): e2300362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37625446

RESUMEN

Molecular bottlebrush (MBB) refer to a synthetic macromolecule, in which a mass of polymeric side chains (SCs) are covalently connected to a macromolecular backbone densely, representing an important type of unimolecular nanomaterial. The chemical composition, size, shape, and surface property of MBB can be precisely tailored by varying the backbones and SCs as well as the grafting density (Gdst ). Meanwhile, the topological structure of backbones and SCs can also significantly affect the chemical and physical properties of MBBs. For the past few years, by combining the structure features of MBB, the polymers with diverse architectures using MBB as building block are synthesized, including linear, branched, and cyclic MBB etc. These promising architectural features will bring MBBs with diverse architectures and lots of applications in advanced materials. For this reason, this work is interested in giving a briefly summary of the recent progress on tailor of well-defined MBBs with diverse architectures using grafting-onto strategy combined with controlled polymerization technique.


Asunto(s)
Nanoestructuras , Polímeros , Polímeros/química , Sustancias Macromoleculares , Nanoestructuras/química , Polimerizacion , Propiedades de Superficie
3.
ACS Macro Lett ; 12(6): 794-800, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37227140

RESUMEN

Ring-opening metathesis polymerization (ROMP) in an aqueous medium provides an important environmentally friendly platform for the preparation of water-soluble polymeric materials. However, it is challenging to keep high synthetic efficacy and good control over molecular weight and distribution due to the inevitable catalyst decomposition in an aqueous medium. To meet this challenge, we propose a facile monomer emulsified aqueous ROMP (ME-ROMP) by injecting a tiny amount of a CH2Cl2 solution of the Grubbs' third-generation catalyst (G3) into the aqueous solution of norbornene (NB) monomers without deoxygenation. Driven by the minimization of interfacial tension, the water-soluble monomers could serve as surfactants with hydrophobic NB moieties inserted into the CH2Cl2 droplets of G3, leading to the significantly suppressed catalyst decomposition and accelerated polymerization. The ME-ROMP is confirmed to be living with an ultrafast polymerization rate, near quantitative initiation and monomer conversion, for the highly efficient and ultrafast synthesis of well-defined water-soluble polynorbornenes with various compositions and architectures.

4.
Chemistry ; 29(12): e202203460, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36445789

RESUMEN

Insulin, a main medication to control glycemia of type 1 and advanced type 2 diabetes, faces problems of a short half-life and poor stability during its clinical use. Zwitterionic polymer shows unique properties of antifouling and low immunogenicity. Here, we have synthesized a new insulin-zwitterionic polymer conjugate (INS-PMPC) through grafting-from strategy by controlled radical polymerization. Apart from showing excellent stability upon mechanical agitation, the resulting INS-PMPC conjugate provided over 20 h of glycemic control due to improved pharmacokinetics in diabetic mice with one single subcutaneous injection. Most importantly, this insulin-zwitterionic polymer conjugate significantly decreases the incidence of hypoglycemia.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hipoglucemia , Animales , Ratones , Insulina de Acción Prolongada , Polímeros , Hipoglucemia/epidemiología , Insulina
5.
ACS Macro Lett ; 11(3): 310-316, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35575364

RESUMEN

Generally, a typical mechanochromophore produces color change through chemical transformation into one or two identical new chromophores/fluorophores under applied mechanical force. Herein, we introduce a novel mechanophore based on an anthracene-aminomaleimide Diels-Alder (DA) adduct featuring two distinct and latent fluorophores. This nonfluorescent mechanophore undergoes retro-DA reaction upon mechanochemical activation in solution and the solid state, generating the respective anthracene and aminomaleimide fragments simultaneously, both of which are highly emissive with different fluorescent colors. In addition, the aminomaleimide fluorophore exhibits sensitive fluorescence on-off response to protic solvents or polar solvents, which enables dual-color mechanochromism from this single mechanophore.


Asunto(s)
Antracenos , Colorantes Fluorescentes , Reacción de Cicloadición , Ionóforos , Solventes
6.
ACS Macro Lett ; 10(10): 1260-1265, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35549031

RESUMEN

To prepare molecular bottlebrushes with high yield via a grafting-from strategy using a reversible deactivation radical polymerization (RDRP) technique has always been a big challenge due to the intra- and intermolecular radical-radical coupling. Herein, a polymerization-induced self-assembly (PISA)-assisted grafting-from strategy based on reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization was developed to synthesize the Janus molecular bottlebrushes with a well-defined structure and high yield using polynorbornene-g-(poly(ethylene glycols)-branch-RAFT agent) (PNB-g-(PEG-branch-CTA)) as a solvophilic multifunctional macro-CTA. The results indicated the biradical coupling terminations of propagating side chains could be significantly suppressed due to the nanoconfinement effect in the PISA of the generated Janus molecular bottlebrushes. Janus molecular bottlebrushes with a narrow molecular weight distribution (Mw/Mn < 1.25) and negligible intermolecular cross-linking at monomer conversion as high as 84% were prepared, demonstrating the efficiency and versatility of the PISA-assisted grafting-from approach.


Asunto(s)
Polietilenglicoles , Polímeros , Polimerizacion
7.
Macromol Rapid Commun ; 42(4): e2000589, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33270313

RESUMEN

In these years, synthesis and applications of Janus structures have aroused great interest for large-scale applications in chemistry and materials science. Up to now, Janus particles with different morphologies and different functionalities have been synthesized in solutions, but the synthesis of Janus particles on solid surfaces has not been touched. In this research, Janus surface micelles (JSMs) are fabricated on the surfaces of silica particles by polymerization induced surface self-assembly (PISSA) approach, and the JSMs are used for enzyme immobilization. Usually, enzyme immobilization should be able to optimize the performance of the immobilized enzymes, and an ideal immobilization system must offer protection to the immobilized enzyme with retained bioactivity. Herein, it is demonstrated that JSMs on silica particles can be used as an ideal platform for the immobilization of enzymes. To prepare JSMs, poly(2-(dimethylamino) ethyl methacrylate) macro chain transfer agent (PDMAEMA-CTA) brushes on silica particles and poly(di(ethylene glycol) methyl ether methacrylate) macro CTA (PDEGMA-CTA) are employed in reversible addition-fragmentation chain transfer dispersion polymerization of styrene. After polymerization, JSMs with polystyrene cores and PDMAEMA/PDEGMA patches on the surfaces are prepared on silica particles. After quaternization reaction, the quaternized PDMAEMA patches are used for the immobilization of enzymes. Experimental results turn out that enhanced bioactivities of the immobilized enzymes are achieved and the enzyme molecules are well protected by surface Janus structures.


Asunto(s)
Enzimas Inmovilizadas , Dióxido de Silicio , Micelas , Polimerizacion , Poliestirenos
8.
Langmuir ; 36(42): 12649-12657, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33070609

RESUMEN

Surface biofunctionalization provides an approach to the fabrication of surfaces with improved biological and clinical performances. Biosurfaces have found increasing applications in many areas such as sensing, cell growth, and disease detection. Efficient synthesis of biosurfaces without damages to the structures and functionalities of biomolecules is a great challenge. Polymerization-induced surface self-assembly (PISSA) provides an effective approach to the synthesis of surface nanostructures with different compositions, morphologies, and properties. In this research, application of PISSA in the fabrication of biosurfaces is investigated. Two different reversible addition-fragmentation chain transfer (RAFT) agents, RAFT chain transfer agent (CTA) on silica particles (SiO2-CTA) and CTA on bovine serum albumin (BSA-CTA), were employed in RAFT dispersion polymerization of N-isopropylacrylamide (NIPAM) in water at a temperature above the lower critical solution temperature (LCST) of poly-(isopropylacrylamide) (PNIPAM). After polymerization, PNIPAM layers with BSA on the top surfaces are fabricated on the surfaces of silica particles. Transmission electron microscopy results show that the average PNIPAM layer thickness increases with monomer conversion. Kinetics study indicates that there is a turn point on a plot of ln([M]0/[M]t) versus polymerization time. After the critical point, surface coassembly of PNIPAM brushes and BSA-PNIPAM bioconjugates is performed on the silica particles. The secondary structure and the activity of BSA immobilized on top of the PNIPAM layers are basically kept unchanged in the PISSA process. To prepare permanently immobilized protein surfaces, PNIPAM layers on silica particles are cross-linked. BSA on the top surfaces presents a reversible "on-off" switching property. At a temperature below the LCST of PNIPAM, the activity of the immobilized BSA is retained; however, the BSA activity decreases significantly at a temperature above the LCST because of the hydrophobic interaction between PNIPAM and BSA. Based on this approach, many different biosurfaces can be fabricated and the materials will find applications in many fields, such as enzyme immobilization, drug delivery, and tissue engineering.

9.
Chempluschem ; 85(5): 998-1007, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32352243

RESUMEN

Studies on the fabrication of hierarchical surface nanostructures have significantly promoted the development of materials with new surface properties and functionalities. In this Minireview, progress on the fabrication of surface nanostructures based on surface organization of polymer brushes are outlined. In the past decades, self-assemblies of polymer brushes, including homopolymer, block-copolymer and mixed-polymer brushes, have aroused great interest in the fields of chemistry and materials science. Recent studies demonstrate that surface co-assemblies of polymer brushes and free polymer chains on solid surfaces are considered as an efficient approach to the preparation of hierarchical nanostructures. Some typical surface nanostructures and properties achieved through surface co-assembly approach are reviewed in this article. Meanwhile, the fundamental problems in the co-assembly approach are discussed and the potential applications of the hierarchical surface nanostructures are presented.

10.
Biomacromolecules ; 19(11): 4463-4471, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30339367

RESUMEN

Well-defined polymer-protein bioconjugates are widely used in therapeutics and biocatalysis. One of the challenges in the synthesis of bioconjugates is the efficient separation of the target conjugate molecules from reaction systems. In this research, surface coassembly of polymer brushes and polymer-protein bioconjugates is investigated, and it is demonstrated that the coassembly approach can be applied in the purification of polymer-protein bioconjugates. Bovine serum albumin-poly( N-isopropylacrylamide) (BSA-PNIPAM) bioconjugates were synthesized by the "grafting from" approach, and PNIPAM brushes on silica particles were prepared by the "grafting to" approach. PNIPAM brushes on silica particles are able to coassemble with BSA-PNIPAM at a temperature above the lower critical solution temperature of PNIPAM. Two-layer surface structures with collapsed PNIPAM in the inner layers and BSA in the outer layers are formed on the silica particles. The size of the silica particles and molecular weight of PNIPAM on the bioconjugates exert influences on the coassembly. The coassembly approach can be used in the purification of bioconjugates. After repeated coassembly centrifugation-release cycles, all the BSA-PNIPAM bioconjugates can be removed from the reaction solutions, and the purified bioconjugates are obtained.


Asunto(s)
Resinas Acrílicas/química , Polímeros/química , Albúmina Sérica Bovina/química , Dióxido de Silicio/química , Animales , Bovinos , Temperatura
11.
ACS Macro Lett ; 5(11): 1222-1226, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35614749

RESUMEN

Hydrogels containing protein components are a type of promising biomaterial. In this paper, we designed triple-responsive polymer-protein networks based on molecular recognition. Reduced bovine serum albumin (BSA) was modified with multiple ß-cyclodextrin (ßCD) by thiol-disulfide exchange reaction. The ßCD-modified BSA was added into the aqueous solution of acrylamide copolymer with pendant adamantyl groups, resulting in the formation of polymer-protein network structures. The assembled polymer networks show triple-responsive behaviors upon treatment with trypsin, reduced glutathione, or native ßCD. The network structures may find applications in tissue engineering and drug controlled release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...