Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 11(11)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34832103

RESUMEN

The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.

2.
Membranes (Basel) ; 11(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34677495

RESUMEN

The mariculture wastewater treatment performance for the combined system of anoxic filter and membrane bioreactor (AF-MBR) was investigated under different hydraulic retention times (HRTs), influent alkalinity, and influent ammonia nitrogen load. The results showed that the removal efficiencies of TOC and total nitrogen were slightly better at the HRT of 8 h than at other HRTs, and the phosphate removal efficiency decreased with the increase of HRT. With the increase of influent alkalinity, the removal of TOC and phosphate did not change significantly. With the increase of influent alkalinity from 300 mg/L to 500 mg/L, the total nitrogen removal efficiency of AF-MBR was improved, but the change of the removal efficiency was not obvious when the alkalinity increased from 500 mg/L to 600 mg/L. When the influent concentration of ammonia nitrogen varied from 20 mg/L to 50 mg/L, the removal efficiencies of TOC, phosphate, and total nitrogen by AF-MBR were stable. An interesting finding was that in all the different operation conditions examined, the treatment efficiency of AF-MBR was always better than that of the control MBR. The concentrations of NO3--N in AF-MBR were relatively low, whereas NO3--N accumulated in the control MBR. The reason was that the microorganisms attached to the carrier and remained fixed in the aerobic and anoxic spaces, so that there was a gradual enrichment of bacteria characterized by slow growth in a high-salt environment. In addition, the microorganisms could gather and grow on the carrier forming a biofilm with higher activity, a richer and more stable population, and enhanced ability to resist a load impact.

3.
Membranes (Basel) ; 11(9)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34564520

RESUMEN

Based on carboxylated multi-walled carbon nanotubes (MWCNTs-COOH), a MWCNTs/PVDF conductive membrane was prepared by a vacuum filtration cross-linking method. The surface compositions and morphology of conductive membranes were studied by X-ray photoelectron spectroscopy and high-resolution field emission scanning electron microscopy, respectively. The effects of cross-linked polymeric polyvinyl alcohol (PVA) on the conductive membrane properties such as the porosity, pore size distribution, pure water flux, conductivity, hydrophilicity, stability and antifouling properties were investigated. Results showed that the addition of PVA to the MWCNTs/PVDF conductive membrane decreased the pure water flux, porosity and the conductivity. However, the hydrophilicity of the modified MWCNTs/PVDF conductive membrane was greatly improved, and the contact angle of pure water was reduced from 70.18° to 25.48° with the addition of PVA contents from 0 wt% to 0.05 wt%. Meanwhile, the conductive membranes with higher content had a relatively higher stability. It was found that the conductive functional layer of the conductive membrane had an average mass loss rate of 1.22% in the 30 min ultrasonic oscillation experiment. The tensile intensity and break elongation ratio of the conductive membrane are improved by the addition of PVA, and the durability of the conductive membrane with PVA was superior to that without PVA added. The electric assisted anti-fouling experiments of modified conductive membrane indicated that compared with the condition without electric field, the average flux attenuation of the conductive membrane was reduced by 11.2%, and the membrane flux recovery rate reached 97.05%. Moreover, the addition of PVA could accelerate the clean of the conductive membranes.

4.
Membranes (Basel) ; 10(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218197

RESUMEN

A microalgae membrane bioreactor (MMBR) with internal circulating fluidized bed (ICFB) was constructed at room temperature to study the removal efficiency of marine aquaculture wastewater pollutants and continuously monitor the biomass of microalgae. Within 40 days of operation, the removal efficiency of NO3--N and NH4+-N in the ICFB-MMBR reached 52% and 85%, respectively, and the removal amount of total nitrogen (TN) reached 16.2 mg/(L·d). In addition, the reactor demonstrated a strong phosphorus removal capacity. The removal efficiency of PO43--P reached 80%. With the strengthening of internal circulation, the microalgae could be distributed evenly and enriched quickly. The maximum growth rate and biomass concentration reached 60 mg/(L·d) and 1.4 g/L, respectively. The harvesting of microalgae did not significantly affect the nitrogen and phosphorus removal efficiency of ICFB-MMBR. The membrane fouling of the reactor was investigated by monitoring transmembrane pressure difference (TMP). Overall, the membrane fouling cycle of ICFB-MMBR system was more than 40 days.

5.
Membranes (Basel) ; 10(9)2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32933156

RESUMEN

In this study, the characteristics of activated sludge flocs were investigated and their effects on the evolution of membrane fouling were considered in the anaerobic membrane bioreactors (AnMBR), which were operated at 25 and 35 °C for municipal wastewater treatment. It was found that the membrane fouling rate of the AnMBR at 25 °C was more severe than that at 35 °C. The membrane fouling trends were not consistent with the change in the concentration of soluble microbial product (SMP). The larger amount of SMP in the AnMBR at 35 °C did not induce more severe membrane fouling than that in the AnMBR at 25 °C. However, the polysaccharide and protein concentration of extracellular polymeric substance (EPS) was higher in the AnMBR at 25 °C in comparison with that in the AnMBR at 35 °C, and the protein/polysaccharide ratio of the EPS in the AnMBR at 25 °C was higher in contrast to that in the AnMBR at 35 °C. Meanwhile, the fouling tendencies measured for the AnMBRs could be related to the characteristics of loosely bound EPS and tightly bound EPS. The analysis of the activated sludge flocs characteristics indicated that a smaller sludge particle size and more fine flocs were observed at the AnMBR with 25 °C. Therefore, the membrane fouling potential in the AnMBR could be explained by the characteristics of activated sludge flocs.

6.
PeerJ ; 7: e7644, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534863

RESUMEN

Perna viridis and P. canaliculus are economically and ecologically important species of shellfish. In this study, the complete ribosomal DNA (rDNA) unit sequences of these species were determined for the first time. The gene order, 18S rRNA-internal transcribed spacer (ITS) 1-5.8S rRNA-ITS2-28S rRNA-intergenic spacer (IGS), was similar to that observed in other eukaryotes. The lengths of the P. viridis and P. canaliculus rDNA sequences ranged from 8,432 to 8,616 bp and from 7,597 to 7,610 bp, respectively, this variability was mainly attributable to the IGS region. The putative transcription termination site and initiation site were confirmed. Perna viridis and P. canaliculus rDNA contained two (length: 93 and 40 bp) and one (length: 131 bp) repeat motifs, respectively. Individual intra-species differences mainly involved the copy number of repeat units. In P. viridis, three cytosine-guanine (CpG) sites with sizes of 440, 1,075 and 537 bp were found to cover nearly the entire IGS sequence, whereas in P. canaliculus, two CpG islands with sizes of 361 and 484 bp were identified. The phylogenetic trees constructed with maximum likelihood and neighbour-joining methods and based on ITS sequences were identical and included three major clusters. Species of the same genus were easily clustered together.

7.
3 Biotech ; 9(9): 328, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31406650

RESUMEN

Chlamydomonas sp. ICE-L, which can thrive in extreme environments of the Antarctic, could represent a promising alternative for polyunsaturated fatty acid (PUFA) production. A new Δ12-fatty acid desaturase (FAD)-encoding gene (Δ 12 CiFAD), 1269 bp in size, was cloned from Chlamydomonas sp. ICE-L. Bioinformatics analysis showed that Δ 12 CiFAD-encoded protein was homologous to known FADs with conserved histidine motifs, and localized to the chloroplast. Functional analysis of Δ 12 CiFAD indicated that recombinant Synechococcus 6803 expressing Δ12CiFAD could accumulate C18:2, whereas recombinant Saccharomyces cerevisiae expressing this enzyme could not accumulate C18:2 or any other new fatty acids. These results indicate that Δ12CiFAD is a functional enzyme in the chloroplast that can adjust Chlamydomonas sp. ICE-L cell membrane fluidity to adapt to Antarctic extreme low-temperature environments, which give us insights into the frigostable and cold-resistant mechanisms of hypothermic organisms.

8.
Fish Shellfish Immunol ; 88: 135-141, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30802629

RESUMEN

Tetraspanins belong to the transmembrane 4 superfamily (TM4SF), and play crucial roles in immune responses. In the present study, a novel tetraspanin gene (designated MmTSPAN) was cloned and characterized from the hard clam Meretrix meretrix. The complete cDNA sequence of MmTSPAN contained an open reading frame (ORF) of 816 bp, which encoded a protein of 271 amino acids. MmTSPAN exhibited highly similarity with previously identified tetraspanins from other species. It contained four transmembrane domains (12-35 aa, 69-92 aa, 99-123 aa and 238-261 aa), characteristic CCG motif and four conservative cysteine residues. The mRNA transcripts of MmTSPAN were ubiquitously detectable in all the tested tissues, with the highest expression level in hepatopancreas. Temporal transcriptional levels in the hepatopancreas revealed significant up-regulation of MmTSPAN by Vibrio splendidus stimulation, with a 3.14-fold increase at 6 h compared to the control, and reaching 32.98-fold at 24 h. These results provide useful information for further study of the function of tetraspanin in the innate immune system of M. meretrix, and may offer a new therapeutic target for diseases of M. meretrix.


Asunto(s)
Bivalvos/genética , Bivalvos/inmunología , Tetraspaninas/genética , Secuencia de Aminoácidos , Animales , Hepatopáncreas/metabolismo , Inmunidad Innata/genética , Vibrio
9.
Mitochondrial DNA B Resour ; 4(2): 3240-3241, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33365936

RESUMEN

In this study, the complete mitochondrial genome of the hybrid of Haliotis discus hannai (♀) × Haliotis iris (♂) was sequenced and analyzed for the first time. The mitogenome had a length of 16,719 bp and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and 1 control region (CR). The sequence identity of the complete mtDNA sequences between the hybrid F1 and H. discus hannai was 99.40%, which revealed that the mitogenome of the hybrid subjected to the maternal inheritance rule. The phylogenetic analysis also presented that the hybrid F1 was relatively more close to H. discus hannai.

10.
Wei Sheng Wu Xue Bao ; 56(9): 1468-76, 2016 Sep.
Artículo en Chino | MEDLINE | ID: mdl-29738219

RESUMEN

Objective: The complete genome of the agarolytic bacterium Pseudoalteromonas sp. NJ21 from Antarctic sample was analyzed by bioinformatics methods and putative agarase aga3311was screened. Expression and characterization of the putative agarase aga3311 were studied. Methods: Gene aga3311 was cloned and expressed by genetic engineering method firstly; then, the recombinant enzyme was purified by Ni-NTA chromatography and the characterization of recombinant enzyme was determined by dinitrosalicylic acid method; the hydrolysis product of recombinant enzyme Aga3311 was analyzed by thin-layer chromatography (TLC) and mass spectrometry (MS). Results: The recombinant expression vectors (pET-30(a)+aga3311) was overexpressed in E. coli BL21(DE3) and 30% of the recombinant protein was soluble. The purified agarase (Aga3311) revealed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular weight of 87 kDa. The optimum temperature of the recombinant agarase was 35℃, and it maintained higher activity between 30 and 45℃, but the activity declined rapidly above 50℃, typical of thermal instability enzyme. The optimum pH was 7.0, and it maintained 50% of its maximum activity between pH 4 and 10. Aga3311 was significantly activated by Fe3+, Be2+, Zn2+ and Ca2+, especially Ca2+ doubled the enzyme activity. The pattern of agar hydrolysis of Aga3311 is an exo-ß-agarase, producing neoagarobiose (NA2) as the final main product. Conclusion: Aga3311 is an exo-ß-agarase of Glyco_hydro_42 family, producing neoagarobiose (NA2) as the final main product.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Pseudoalteromonas/enzimología , Secuencia de Aminoácidos , Regiones Antárticas , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Clonación Molecular , Disacáridos/metabolismo , Estabilidad de Enzimas , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Peso Molecular , Pseudoalteromonas/química , Pseudoalteromonas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...