Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37021860

RESUMEN

Few-shot Class-Incremental Learning (FSCIL) aims at learning new concepts continually with only a few samples, which is prone to suffer the catastrophic forgetting and overfitting problems. The inaccessibility of old classes and the scarcity of the novel samples make it formidable to realize the trade-off between retaining old knowledge and learning novel concepts. Inspired by that different models memorize different knowledge when learning novel concepts, we propose a Memorizing Complementation Network (MCNet) to ensemble multiple models that complements the different memorized knowledge with each other in novel tasks. Additionally, to update the model with few novel samples, we develop a Prototype Smoothing Hard-mining Triplet (PSHT) loss to push the novel samples away from not only each other in current task but also the old distribution. Extensive experiments on three benchmark datasets, e.g., CIFAR100, miniImageNet and CUB200, have demonstrated the superiority of our proposed method.

2.
IEEE Trans Image Process ; 31: 1520-1531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35050856

RESUMEN

Semantic information provides intra-class consistency and inter-class discriminability beyond visual concepts, which has been employed in Few-Shot Learning (FSL) to achieve further gains. However, semantic information is only available for labeled samples but absent for unlabeled samples, in which the embeddings are rectified unilaterally by guiding the few labeled samples with semantics. Therefore, it is inevitable to bring a cross-modal bias between semantic-guided samples and nonsemantic-guided samples, which results in an information asymmetry problem. To address this problem, we propose a Modal-Alternating Propagation Network (MAP-Net) to supplement the absent semantic information of unlabeled samples, which builds information symmetry among all samples in both visual and semantic modalities. Specifically, the MAP-Net transfers the neighbor information by the graph propagation to generate the pseudo-semantics for unlabeled samples guided by the completed visual relationships and rectify the feature embeddings. In addition, due to the large discrepancy between visual and semantic modalities, we design a Relation Guidance (RG) strategy to guide the visual relation vectors via semantics so that the propagated information is more beneficial. Extensive experimental results on three semantic-labeled datasets, i.e., Caltech-UCSD-Birds 200-2011, SUN Attribute Database and Oxford 102 Flower, have demonstrated that our proposed method achieves promising performance and outperforms the state-of-the-art approaches, which indicates the necessity of information symmetry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...