Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(11): 101297, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992682

RESUMEN

Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress. We show that GRP78 is highly expressed on the cell surface of multiple solid and brain tumors, making cell surface GRP78 a promising chimeric antigen receptor (CAR) T cell target. We demonstrate that GRP78-CAR T cells can recognize and kill GRP78+ brain and solid tumors in vitro and in vivo. Additionally, our findings demonstrate that GRP78 is upregulated on CAR T cells upon T cell activation; however, this expression is tumor-cell-line specific and results in heterogeneous GRP78-CAR T cell therapeutic response.


Asunto(s)
Neoplasias Encefálicas , Receptores Quiméricos de Antígenos , Humanos , Chaperón BiP del Retículo Endoplásmico , Glucosa , Linfocitos T , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Neoplasias Encefálicas/terapia
2.
Sci Transl Med ; 13(620): eabh0272, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34788079

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is revolutionizing cancer immunotherapy for patients with B cell malignancies and is now being developed for solid tumors and chronic viral infections. Although clinical trials have demonstrated the curative potential of CAR T cell therapy, a substantial and well-established limitation is the heightened contraction and transient persistence of CAR T cells during prolonged antigen exposure. The underlying mechanism(s) for this dysfunctional state, often termed CAR T cell exhaustion, remains poorly defined. Here, we report that exhaustion of human CAR T cells occurs through an epigenetic repression of the T cell's multipotent developmental potential. Deletion of the de novo DNA methyltransferase 3 alpha (DNMT3A) in T cells expressing first- or second-generation CARs universally preserved the cells' ability to proliferate and mount an antitumor response during prolonged tumor exposure. The increased functionality of the exhaustion-resistant DNMT3A knockout CAR T cells was coupled to an up-regulation of interleukin-10, and genome-wide DNA methylation profiling defined an atlas of genes targeted for epigenetic silencing. This atlas provides a molecular definition of CAR T cell exhaustion, which includes many transcriptional regulators that limit the "stemness" of immune cells, including CD28, CCR7, TCF7, and LEF1. Last, we demonstrate that this epigenetically regulated multipotency program is firmly coupled to the clinical outcome of prior CAR T cell therapies. These data document the critical role epigenetic mechanisms play in limiting the fate potential of human T cells and provide a road map for leveraging this information for improving CAR T cell efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Antígenos CD28 , Epigénesis Genética , Humanos , Neoplasias/terapia , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Neuro Oncol ; 23(6): 999-1011, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33320196

RESUMEN

BACKGROUND: Immunotherapy with chimeric antigen receptor (CAR) T cells is actively being explored for pediatric brain tumors in preclinical models and early phase clinical studies. At present, it is unclear which CAR target antigens are consistently expressed across different pediatric brain tumor types. In addition, the extent of HLA class I expression is unknown, which is critical for tumor recognition by conventional αßTCR T cells. METHODS: We profiled 49 low- and high-grade pediatric brain tumor patient-derived orthotopic xenografts (PDOX) by flow analysis for the expression of 5 CAR targets (B7-H3, GD2, IL-13Rα2, EphA2, and HER2), and HLA class I. In addition, we generated B7-H3-CAR T cells and evaluated their antitumor activity in vitro and in vivo. RESULTS: We established an expression hierarchy for the analyzed antigens (B7-H3 = GD2 >> IL-13Rα2 > HER2 = EphA2) and demonstrated that antigen expression is heterogenous. All high-grade gliomas expressed HLA class I, but only 57.1% of other tumor subtypes had detectable expression. We then selected B7-H3 as a target for CAR T-cell therapy. B7-H3-CAR T cells recognized tumor cells in an antigen-dependent fashion. Local or systemic administration of B7-H3-CAR T cells induced tumor regression in PDOX and immunocompetent murine glioma models resulting in a significant survival advantage. CONCLUSIONS: Our study highlights the importance of studying target antigen and HLA class I expression in PDOX samples for the future design of immunotherapies. In addition, our results support active preclinical and clinical exploration of B7-H3-targeted CAR T-cell therapies for a broad spectrum of pediatric brain tumors.


Asunto(s)
Neoplasias Encefálicas , Receptores Quiméricos de Antígenos , Animales , Antígenos de Superficie , Antígenos B7 , Neoplasias Encefálicas/terapia , Niño , Humanos , Ratones , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Chem Biol Interact ; 312: 108816, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31505164

RESUMEN

Indirubins E804 (indirubin-3'-(2,3 dihydroxypropyl)-oximether) and 7BIO (7-Bromoindirubin-3'-oxime) are synthetic derivatives of natural indirubin, the active compound in Danggui Longhui Wan, a traditional Chinese remedy for cancer and inflammation. Herein, we explore E804 and 7BIO for their potential to modulate key pro-inflammatory genes and cytokines in LN-18 and T98G glioblastoma cells. High grade gliomas typically secrete large amounts of inflammatory cytokines and growth factors that promote tumor growth in an autocrine fashion. Inflammation is emerging as a key concern in the success of new treatment modalities for glioblastomas. Studies indicate that select indirubin derivatives bind and activate signaling of the AHR pathway, as well as inhibit cyclin-dependent kinases and STAT3 signaling. AHR signaling is involved in hematopoiesis, immune function, cell cycling, and inflammation, and thus may be a possible target for glioma treatment. To determine the significance of the AHR pathway in LN-18 and T98G glioma inflammatory profiles, and on the effects of E804 and 7BIO on these profiles, we used 6,2',4'-trimethoxyflavone (TMF), a putative selective AHR antagonist. It was confirmed that E804 and 7BIO activates the AHR leading to cyp1b1 expression, and that TMF antagonizes expression. We then employed a commercial cancer inflammation and immunity crosstalk qRT-PCR array to screen for anti-inflammatory related properties. TMF alone inhibited expression of ifng, ptsg2, il12b, tnfa, il10, il13, the balance between pd1 and pdl1, and even expression of mhc1a/b. E804 was very potent in suppressing many pro-inflammatory genes, including il1a, il1b, il12a, ptgs2, tlr4, and others. E804 also affected expression of il6, vegfa, and stat3. Conversely, 7BIO induced cox2, but suppressed a different selection of pro-inflammatory genes including nos2, tnfa, and igf1. Secretion of IL-6 protein, an iconic inflammatory cytokine, was decreased by E804. VEGF (vascular endothelial growth factor) protein secretion was upregulated by 7BIO, yet downregulated by E804 and E804 plus TMF. Thus, E804 is both an AHR ligand and regulator of important pro-inflammatory cytokines such as IL-6 and oncogene STAT3, among others. Our results point to the use of E804 and TMF in combination as a promising new treatment for glioblastoma.


Asunto(s)
Indoles/farmacología , Oximas/farmacología , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Indoles/química , Oximas/química , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...