Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 9(1): 459, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104154

RESUMEN

CDK12 is a transcriptional cyclin-dependent kinase (CDK) that interacts with cyclin K to regulate different aspects of gene expression. The CDK12-cyclin K complex phosphorylates several substrates, including RNA polymerase II (Pol II), and thereby regulates transcription elongation, RNA splicing, as well as cleavage and polyadenylation. Because of its implication in cancer, including breast cancer and melanoma, multiple pharmacological inhibitors of CDK12 have been identified to date, including THZ531 and SR-4835. While both CDK12 inhibitors affect Poll II phosphorylation, we found that SR-4835 uniquely promotes cyclin K degradation via the proteasome. Using loss-of-function genetic screening, we found that SR-4835 cytotoxicity depends on a functional CUL4-RBX1-DDB1 ubiquitin ligase complex. Consistent with this, we show that DDB1 is required for cyclin K degradation, and that SR-4835 promotes DDB1 interaction with the CDK12-cyclin K complex. Docking studies and structure-activity relationship analyses of SR-4835 revealed the importance of the benzimidazole side-chain in molecular glue activity. Together, our results indicate that SR-4835 acts as a molecular glue that recruits the CDK12-cyclin K complex to the CUL4-RBX1-DDB1 ubiquitin ligase complex to target cyclin K for degradation.

2.
Nat Commun ; 13(1): 6457, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309522

RESUMEN

Melanoma is the deadliest form of skin cancer and considered intrinsically resistant to chemotherapy. Nearly all melanomas harbor mutations that activate the RAS/mitogen-activated protein kinase (MAPK) pathway, which contributes to drug resistance via poorly described mechanisms. Herein we show that the RAS/MAPK pathway regulates the activity of cyclin-dependent kinase 12 (CDK12), which is a transcriptional CDK required for genomic stability. We find that melanoma cells harbor constitutively high CDK12 activity, and that its inhibition decreases the expression of long genes containing multiple exons, including many genes involved in DNA repair. Conversely, our results show that CDK12 inhibition promotes the expression of short genes with few exons, including many growth-promoting genes regulated by the AP-1 and NF-κB transcription factors. Inhibition of these pathways strongly synergize with CDK12 inhibitors to suppress melanoma growth, suggesting promising drug combinations for more effective melanoma treatment.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular Tumoral
3.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012478

RESUMEN

E4F1 is essential for early embryonic mouse development and for controlling the balance between proliferation and survival of actively dividing cells. We previously reported that E4F1 is essential for the survival of murine p53-deficient cancer cells by controlling the expression of genes involved in mitochondria functions and metabolism, and in cell-cycle checkpoints, including CHEK1, a major component of the DNA damage and replication stress responses. Here, combining ChIP-Seq and RNA-Seq approaches, we identified the transcriptional program directly controlled by E4F1 in Human Triple-Negative Breast Cancer cells (TNBC). E4F1 binds and regulates a limited list of direct target genes (57 genes) in these cells, including the human CHEK1 gene and, surprisingly, also two other genes encoding post-transcriptional regulators of the ATM/ATR-CHK1 axis, namely, the TTT complex component TTI2 and the phosphatase PPP5C, that are essential for the folding and stability, and the signaling of ATM/ATR kinases, respectively. Importantly, E4F1 also binds the promoter of these genes in vivo in Primary Derived Xenograft (PDX) of human TNBC. Consequently, the protein levels and signaling of CHK1 but also of ATM/ATR kinases are strongly downregulated in E4F1-depleted TNBC cells resulting in a deficiency of the DNA damage and replicative stress response in these cells. The E4F1-depleted cells fail to arrest into S-phase upon treatment with the replication-stalling agent Gemcitabine, and are highly sensitized to this drug, as well as to other DNA-damaging agents, such as Cisplatin. Altogether, our data indicate that in breast cancer cells the ATM/ATR-CHK1 signaling pathway and DNA damage-stress response are tightly controlled at the transcriptional and post-transcriptional level by E4F1.


Asunto(s)
Proteínas Represoras , Factores de Transcripción , Neoplasias de la Mama Triple Negativas , Ubiquitina-Proteína Ligasas , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
PLoS Genet ; 17(6): e1009583, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125833

RESUMEN

Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación , Transporte de Proteínas , Subunidades Ribosómicas Pequeñas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Transcripción Genética
5.
Cancer Res ; 78(9): 2191-2204, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440170

RESUMEN

Metabolic reprogramming is a hallmark of cancer that includes increased glucose uptake and accelerated aerobic glycolysis. This phenotype is required to fulfill anabolic demands associated with aberrant cell proliferation and is often mediated by oncogenic drivers such as activated BRAF. In this study, we show that the MAPK-activated p90 ribosomal S6 kinase (RSK) is necessary to maintain glycolytic metabolism in BRAF-mutated melanoma cells. RSK directly phosphorylated the regulatory domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), an enzyme that catalyzes the synthesis of fructose-2,6-bisphosphate during glycolysis. Inhibition of RSK reduced PFKFB2 activity and glycolytic flux in melanoma cells, suggesting an important role for RSK in BRAF-mediated metabolic rewiring. Consistent with this, expression of a phosphorylation-deficient mutant of PFKFB2 decreased aerobic glycolysis and reduced the growth of melanoma in mice. Together, these results indicate that RSK-mediated phosphorylation of PFKFB2 plays a key role in the metabolism and growth of BRAF-mutated melanomas.Significance: RSK promotes glycolytic metabolism and the growth of BRAF-mutated melanoma by driving phosphorylation of an important glycolytic enzyme. Cancer Res; 78(9); 2191-204. ©2018 AACR.


Asunto(s)
Melanoma/genética , Fosfofructoquinasa-2/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proliferación Celular/genética , Reprogramación Celular/genética , Glucosa/metabolismo , Glucólisis/genética , Células HeLa , Humanos , Melanoma/metabolismo , Melanoma/patología , Fosforilación
6.
Semin Cancer Biol ; 48: 53-61, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28476656

RESUMEN

The 90kDa ribosomal S6 kinase (RSK) family is a group of Ser/Thr protein kinases (RSK1-4) that function downstream of the Ras/mitogen-activated protein kinase (MAPK) signalling pathway. RSK regulates many substrates involved in cell survival, growth, and proliferation, and as such, deregulated RSK activity has been associated with multiple cancer types. RSK expression and activity are dysregulated in several malignancies, including breast, prostate, and lung cancer, and available evidence suggests that RSK may be a promising cancer therapeutic target. Current limitations include the lack of RSK inhibitors with suitable pharmacokinetics and selectivity toward particular isoforms. This review briefly describes the current knowledge on RSK activation and function, with a particular emphasis on RSK-dependent mechanisms associated with tumorigenesis and pharmacological inhibition.


Asunto(s)
Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas/fisiología , Animales , Adhesión Celular , Ciclo Celular/fisiología , Proliferación Celular , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores
7.
Proc Natl Acad Sci U S A ; 113(39): 10998-1003, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621446

RESUMEN

The mitochondrial pyruvate dehydrogenase (PDH) complex (PDC) acts as a central metabolic node that mediates pyruvate oxidation and fuels the tricarboxylic acid cycle to meet energy demand. Here, we reveal another level of regulation of the pyruvate oxidation pathway in mammals implicating the E4 transcription factor 1 (E4F1). E4F1 controls a set of four genes [dihydrolipoamide acetlytransferase (Dlat), dihydrolipoyl dehydrogenase (Dld), mitochondrial pyruvate carrier 1 (Mpc1), and solute carrier family 25 member 19 (Slc25a19)] involved in pyruvate oxidation and reported to be individually mutated in human metabolic syndromes. E4F1 dysfunction results in 80% decrease of PDH activity and alterations of pyruvate metabolism. Genetic inactivation of murine E4f1 in striated muscles results in viable animals that show low muscle PDH activity, severe endurance defects, and chronic lactic acidemia, recapitulating some clinical symptoms described in PDC-deficient patients. These phenotypes were attenuated by pharmacological stimulation of PDH or by a ketogenic diet, two treatments used for PDH deficiencies. Taken together, these data identify E4F1 as a master regulator of the PDC.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Proteínas de Unión al ADN/deficiencia , Dieta Cetogénica , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Estriado/metabolismo , Fenotipo , Ácido Pirúvico/metabolismo , Proteínas Represoras , Factores de Transcripción/deficiencia , Ubiquitina-Proteína Ligasas
8.
Genom Data ; 5: 368-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26484288

RESUMEN

This Data in Brief report describes the experimental and bioinformatic procedures that we used to analyze and interpret E4F1 ChIP-seq experiments published in Rodier et al. (2015) [10]. Raw and processed data are available at the GEO DataSet repository under the subseries # GSE57228. E4F1 is a ubiquitously expressed zinc-finger protein of the GLI-Kruppel family that was first identified in the late eighties as a cellular transcription factor targeted by the adenoviral oncoprotein E1A13S (Ad type V) and required for the transcription of adenoviral genes (Raychaudhuri et al., 1987) [8]. It is a multifunctional factor that also acts as an atypical E3 ubiquitin ligase for p53 (Le Cam et al., 2006) [2]. Using KO mouse models we then demonstrated that E4F1 is essential for early embryonic development (Le Cam et al., 2004), for proliferation of mouse embryonic cell (Rodier et al., 2015), for the maintenance of epidermal stem cells (Lacroix et al., 2010) [6], and strikingly, for the survival of cancer cells (Hatchi et al., 2007) [4]; (Rodier et al., 2015) [10]. The latter survival phenotype was p53-independent and suggested that E4F1 was controlling a transcriptional program driving essential functions in cancer cells. To identify this program, we performed E4F1 ChIP-seq analyses in primary Mouse Embryonic Fibroblasts (MEF) and in p53(-/-), H-Ras(V12)-transformed MEFs. The program directly controlled by E4F1 was obtained by intersecting the lists of E4F1 genomic targets with the lists of genes differentially expressed in E4F1 KO and E4F1 WT cells (Rodier et al., 2015). We describe hereby how we improved our ChIP-seq analyses workflow by applying prefilters on raw data and by using a combination of two publicly available programs, Cisgenome and QESEQ.

9.
Cell Rep ; 11(2): 220-33, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25843721

RESUMEN

Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Mitocondrias/metabolismo , Neoplasias/genética , Proteínas Quinasas/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Animales , Supervivencia Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/genética , Proteínas de Unión al ADN/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Mitocondrias/patología , Células Madre Embrionarias de Ratones/metabolismo , Neoplasias/metabolismo , Proteínas Quinasas/biosíntesis , Pirimidinas/biosíntesis , Proteínas Represoras , Estrés Fisiológico/genética , Factores de Transcripción/biosíntesis , Proteína p53 Supresora de Tumor/biosíntesis , Ubiquitina-Proteína Ligasas
10.
J Membr Biol ; 245(9): 555-64, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22864479

RESUMEN

This review presents an overview of the effects of electric fields on giant unilamellar vesicles. The application of electrical fields leads to three basic phenomena: shape changes, membrane breakdown, and uptake of molecules. We describe how some of these observations can be used to measure a variety of physical properties of lipid membranes or to advance our understanding of the phenomena of electropermeabilization. We also present results on how electropermeabilization and other liposome responses to applied fields are affected by lipid composition and by the presence of molecules of therapeutic interest in the surrounding solution.


Asunto(s)
Electroporación , Liposomas Unilamelares/química , Fusión de Membrana , Conformación Molecular , Permeabilidad , Docilidad , Termodinámica
11.
J Biol Chem ; 286(35): 30571-30581, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21737450

RESUMEN

By providing contacts between hematopoietic cells and the bone marrow microenvironment, integrins are implicated in cell adhesion and thereby in control of cell fate of normal and leukemia cells. The ASB2 gene, initially identified as a retinoic acid responsive gene and a target of the promyelocytic leukemia retinoic acid receptor α oncoprotein in acute promyelocytic leukemia cells, encodes two isoforms, a hematopoietic-type (ASB2α) and a muscle-type (ASB2ß) that are involved in hematopoietic and myogenic differentiation, respectively. ASB2α is the specificity subunit of an E3 ubiquitin ligase complex that targets filamins to proteasomal degradation. To examine the relationship of the ASB2α structure to E3 ubiquitin ligase function, functional assays and molecular modeling were performed. We show that ASB2α, through filamin A degradation, enhances adhesion of hematopoietic cells to fibronectin, the main ligand of ß1 integrins. Furthermore, we demonstrate that a short N-terminal region specific to ASB2α, together with ankyrin repeats 1 to 10, is necessary for association of ASB2α with filamin A. Importantly, the ASB2α N-terminal region comprises a 9-residue segment with predicted structural homology to the filamin-binding motifs of migfilin and ß integrins. Together, these data provide new insights into the molecular mechanisms of ASB2α binding to filamin.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Integrinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Adhesión Celular , Fibronectinas/metabolismo , Células HeLa , Humanos , Ratones , Músculos/metabolismo , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA