Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Rep (Hoboken) ; 6(2): e1699, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36806722

RESUMEN

BACKGROUND: Elevated tissue factor (TF) expression, although restricted in normal tissue, has been reported in multiple solid cancers, and expression has been associated with poor prognosis. This manuscript compares TF expression across various solid tumor types via immunohistochemistry in a single study, which has not been performed previously. AIMS: To increase insight in the prevalence and cellular localization of TF expression across solid cancer types, we performed a detailed and systematic analysis of TF expression in tumor tissue obtained from patients with ovarian, esophageal, bladder, cervical, endometrial, pancreatic, prostate, colon, breast, non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC), and glioblastoma. The spatial and temporal variation of TF expression was analyzed over time and upon disease progression in patient-matched biopsies taken at different timepoints. In addition, TF expression in patient-matched primary tumor and metastatic lesions was also analyzed. METHODS AND RESULTS: TF expression was detected via immunohistochemistry (IHC) using a validated TF-specific antibody. TF was expressed in all cancer types tested, with highest prevalence in pancreatic cancer, cervical cancer, colon cancer, glioblastoma, HNSCC, and NSCLC, and lowest in breast cancer. Staining was predominantly membranous in pancreatic, cervical, and HNSCC, and cytoplasmic in glioblastoma and bladder cancer. In general, expression was consistent between biopsies obtained from the same patient over time, although variability was observed for individual patients. NSCLC biopsies of primary tumor and matched lymph node metastases showed no clear difference in TF expression overall, although individual patient changes were observed. CONCLUSION: This study shows that TF is expressed across a broad range of solid cancer types, and expression is present upon tumor dissemination and over the course of treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias de Cabeza y Cuello , Neoplasias Pulmonares , Masculino , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Tromboplastina/análisis , Neoplasias Pulmonares/patología
2.
Mol Cancer Ther ; 18(2): 312-322, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30381448

RESUMEN

Immunotherapy of cancer with CD3-targeting bispecific antibodies (CD3 bsAb) is a fast developing field, and multiple tumor-associated antigens (TAA) are evaluated for hematologic and solid malignancies. The efficacy of these CD3 bsAb is usually examined in xenograft mouse tumor models with human T cells or in genetically engineered mouse models, where human TAA are introduced. These models often fail to fully recapitulate the natural tumor environment, especially for solid cancers, because of interspecies differences. Here, we investigated the systemic and intratumoral effects of a mouse CD3 bsAb in a fully immune-competent mouse melanoma model. Systemic administration of 0.5 mg/kg antibody induced a brief overall T-cell activation that was selectively sustained in the tumor microenvironment for several days. A fast subsequent influx of inflammatory macrophages into the tumor microenvironment was observed, followed by an increase in the number of CD4+ and CD8+ T cells. Although the capacity to directly kill melanoma cells in vitro was very modest, optimal tumor elimination was observed in vivo, even in the absence of CD8+ T cells, implying a redundancy in T-cell subsets for therapeutic efficacy. Finally, we took advantage of the full immune competence of our mouse model and tested immune memory induction. Despite a strong initial immunity against melanoma, treatment with the CD3 bsAb did not install protective memory responses. The observed mechanisms of action revealed in this immune-competent mouse model might form a rational basis for combinatorial approaches.


Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Complejo CD3/antagonistas & inhibidores , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Melanoma/tratamiento farmacológico , Animales , Anticuerpos Biespecíficos/farmacología , Antígenos de Neoplasias/genética , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Memoria Inmunológica , Activación de Linfocitos , Melanoma/inmunología , Ratones , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...