Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 38(13): 110572, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35354023

RESUMEN

Gut microbes play important roles in host physiology; however, the mechanisms underlying their impact remain poorly characterized. Here, we demonstrate that microbes not only influence gut physiology but also alter its epithelial composition. The microbiota and pathogens both influence intestinal stem cell (ISC) differentiation. Intriguingly, while the microbiota promotes ISC differentiation into enterocytes (EC), pathogens stimulate enteroendocrine cell (EE) fate and long-term accumulation of EEs in the midgut epithelium. Importantly, the evolutionarily conserved Drosophila NFKB (Relish) pushes stem cell lineage specification toward ECs by directly regulating differentiation factors. Conversely, the JAK-STAT pathway promotes EE fate in response to infectious damage. We propose a model in which the balance of microbial pattern recognition pathways, such as Imd-Relish, and damage response pathways, such as JAK-STAT, influence ISC differentiation, epithelial composition, and gut physiology.


Asunto(s)
Proteínas de Drosophila , Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Enterocitos/metabolismo , Intestinos , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal
2.
Elife ; 102021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34553686

RESUMEN

The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet's impact on midgut size. However, when stem cell proliferation was deficient, diet's impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.


Asunto(s)
Dieta , Drosophila melanogaster/crecimiento & desarrollo , Tracto Gastrointestinal/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Proliferación Celular , Drosophila melanogaster/fisiología , Enterocitos/citología , Femenino , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/fisiología , Masculino , Nicho de Células Madre
3.
Cell Host Microbe ; 26(3): 412-425.e5, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31492656

RESUMEN

Surviving infection requires immune and repair mechanisms. Developing organisms face the additional challenge of integrating these mechanisms with tightly controlled developmental processes. The larval Drosophila midgut lacks dedicated intestinal stem cells. We show that, upon infection, larvae perform limited repair using adult midgut precursors (AMPs). AMPs differentiate in response to damage to generate new enterocytes, transiently depleting their pool. Developmental delay allows for AMP reconstitution, ensuring the completion of metamorphosis. Notch signaling is required for the differentiation of AMPs into the encasing, niche-like peripheral cells (PCs), but not to differentiate PCs into enterocytes. Dpp (TGF-ß) signaling is sufficient, but not necessary, to induce PC differentiation into enterocytes. Infection-induced JAK-STAT pathway is both required and sufficient for differentiation of AMPs and PCs into new enterocytes. Altogether, this work highlights the constraints imposed by development on an organism's response to infection and demonstrates the transient use of adult precursors for tissue repair.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Tracto Gastrointestinal/metabolismo , Larva/metabolismo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Drosophila/microbiología , Drosophila/fisiología , Proteínas de Drosophila/genética , Enterocitos/metabolismo , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/patología , Quinasas Janus/metabolismo , Larva/inmunología , Larva/microbiología , Metamorfosis Biológica , Pectobacterium carotovorum/patogenicidad , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma
4.
PLoS Genet ; 13(11): e1007091, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29108021

RESUMEN

Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-ß/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.


Asunto(s)
Infecciones Bacterianas/metabolismo , Drosophila/genética , Drosophila/microbiología , Transducción de Señal , Animales , Infecciones Bacterianas/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterocitos/metabolismo , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Intestinos/citología , Intestinos/microbiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Pectobacterium carotovorum/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas/metabolismo , Células Madre/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
5.
Cell Rep ; 12(2): 346-58, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26146076

RESUMEN

Deciphering contributions of specific cell types to organ function is experimentally challenging. The Drosophila midgut is a dynamic organ with five morphologically and functionally distinct regions (R1-R5), each composed of multipotent intestinal stem cells (ISCs), progenitor enteroblasts (EBs), enteroendocrine cells (EEs), enterocytes (ECs), and visceral muscle (VM). To characterize cellular specialization and regional function in this organ, we generated RNA-sequencing transcriptomes of all five cell types isolated by FACS from each of the five regions, R1-R5. In doing so, we identify transcriptional diversities among cell types and document regional differences within each cell type that define further specialization. We validate cell-specific and regional Gal4 drivers; demonstrate roles for transporter Smvt and transcription factors GATAe, Sna, and Ptx1 in global and regional ISC regulation, and study the transcriptional response of midgut cells upon infection. The resulting transcriptome database (http://flygutseq.buchonlab.com) will foster studies of regionalization, homeostasis, immunity, and cell-cell interactions.


Asunto(s)
Drosophila/metabolismo , Intestinos/citología , Transcriptoma , Músculos Abdominales/citología , Músculos Abdominales/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Drosophila/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Factores de Transcripción GATA/antagonistas & inhibidores , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Mucosa Intestinal/metabolismo , Análisis de Componente Principal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción de la Familia Snail , Células Madre/citología , Células Madre/metabolismo , Simportadores/metabolismo , Factores de Transcripción/metabolismo
6.
Methods Mol Biol ; 1213: 171-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25173382

RESUMEN

Drosophila melanogaster presents itself as a powerful model for studying the somatic stem cells of the gut and how bacteria affect intestinal homeostasis. The Gal4/UAS/Gal80 (ts) system allows for temporally controlled expression of fluorescent proteins, RNAi knock-down, and other genetic constructs targeted to specific cell populations in the midgut. Similarly, FLP/FRT-mediated somatic recombinations in intestinal stem cells (ISCs) are utilized to visualize and analyze the clonal lineages of individual or populations of stem cells. Live imaging microscopy and immunofluorescence allow both qualitative and quantitative characterization of stem cell shape, proliferation, and differentiation. Here, we detail the use of these tools and techniques for studying gut performance during and following a bacterial infection in the adult fruit fly.


Asunto(s)
Drosophila melanogaster , Intestinos/citología , Intestinos/microbiología , Microbiota , Células Madre/citología , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Homeostasis , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Regeneración , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA