Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214779

RESUMEN

Munc13 proteins are priming factors for SNARE-dependent exocytosis, which are activated by diacylglycerol (DAG)-binding to their C1-domain. Several Munc13 paralogs exist, but their differential roles are not well understood. We studied the interdependence of phorbolesters (DAG mimics) with Munc13-1 and ubMunc13-2 in mouse adrenal chromaffin cells. Although expression of either Munc13-1 or ubMunc13-2 stimulated secretion, phorbolester was only stimulatory for secretion when ubMunc13-2 expression dominated, but inhibitory when Munc13-1 dominated. Accordingly, phorbolester stimulated secretion in wildtype cells, or cells overexpressing ubMunc13-2, but inhibited secretion in Munc13-2/Unc13b knockout (KO) cells or in cells overexpressing Munc13-1. Phorbolester was more stimulatory in the Munc13-1/Unc13a KO than in WT littermates, showing that endogenous Munc13-1 limits the effects of phorbolester. Imaging showed that ubMunc13-2 traffics to the plasma membrane with a time-course matching Ca2+-dependent secretion, and trafficking is independent of Synaptotagmin-7 (Syt7). However, in the absence of Syt7, phorbolester became inhibitory for both Munc13-1 and ubMunc13-2-driven secretion, indicating that stimulatory phorbolester x Munc13-2 interaction depends on functional pairing with Syt7. Overall, DAG/phorbolester, ubMunc13-2 and Syt7 form a stimulatory triad for dense-core vesicle priming.


Asunto(s)
Diglicéridos , Ésteres del Forbol , Animales , Ratones , Vesículas de Núcleo Denso , Exocitosis , Proteínas SNARE/metabolismo , Sinaptotagminas
2.
Cancer Lett ; 543: 215765, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680072

RESUMEN

Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Médula Suprarrenal , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/metabolismo , Médula Suprarrenal/metabolismo , Calcio , Calcio de la Dieta , Catecolaminas/metabolismo , Exocitosis , Humanos , Feocromocitoma/metabolismo
3.
Elife ; 102021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33749593

RESUMEN

Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20-40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming as a prelude to fast and slow exocytosis triggering.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vesículas Secretoras/metabolismo , Sinaptotagminas/metabolismo , Animales , Células Cromafines/metabolismo , Tomografía con Microscopio Electrónico/métodos , Exocitosis , Fusión de Membrana , Ratones , Ratones Endogámicos C57BL
4.
Methods Mol Biol ; 2233: 233-251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222139

RESUMEN

Fusion of vesicles with the plasma membrane and liberation of their contents is a multistep process involving several proteins. Correctly assigning the role of specific proteins and reactions in this cascade requires a measurement method with high temporal resolution. Patch-clamp recordings of cell membrane capacitance in combination with calcium measurements, calcium uncaging, and carbon-fiber amperometry allow for the accurate determination of vesicle pool sizes, their fusion kinetics, and their secreted oxidizable content. Here, we will describe this method in a model system for neurosecretion, the adrenal chromaffin cells, which secrete adrenaline.


Asunto(s)
Calcio/metabolismo , Células Cromafines/metabolismo , Exocitosis/genética , Técnicas de Placa-Clamp/métodos , Glándulas Suprarrenales/metabolismo , Animales , Señalización del Calcio/genética , Capacidad Eléctrica , Cinética , Potenciales de la Membrana/genética , Ratones
5.
Nat Commun ; 11(1): 1266, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152276

RESUMEN

Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A's role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Endocitosis/fisiología , Sistemas Neurosecretores/metabolismo , Aciltransferasas/genética , Animales , Células Cromafines/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistemas Neurosecretores/citología
6.
Mol Cell Neurosci ; 102: 103452, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794878

RESUMEN

SNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons. Whole-cell patch clamp recordings were performed to assess the effect of Ser-187 phosphorylation on synaptic transmission. Blocking phosphorylation by expressing the S187C mutant did not affect synapse density, basic evoked or spontaneous neurotransmission, the readily-releasable pool size or its Ca2+-independent or Ca2+-dependent replenishment. Furthermore, it did not affect the response to phorbol esters, which activate PKC. Expressing S187C in the context of the SNAP-25A isoform also did not affect synaptic transmission. Strikingly, the - potentially phosphomimetic - mutant S187E reduced spontaneous release and release probability, with the largest effect seen in the SNAP-25B isoform, showing that a negative charge in this position is detrimental for neurotransmission, in agreement with electrostatic fusion triggering. During the course of our experiments, we found that higher SNAP-25B expression levels led to decreased paired pulse potentiation, probably due to higher release probabilities. Under these conditions, the potentiation of evoked EPSCs by phorbol esters was followed by a persistent down-regulation, probably due to a ceiling effect. In conclusion, our results indicate that phosphorylation of Ser-187 in SNAP-25 is not involved in modulation of synaptic release by Ca2+ or phorbol esters.


Asunto(s)
Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Mutación , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Ésteres del Forbol/farmacología , Fosforilación , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Serina/química , Serina/genética , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/genética
7.
IUBMB Life ; 72(4): 544-552, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31859439

RESUMEN

Besides a fundamental structural role at the plasma membrane, spectrin- and actin-based skeletons have been proposed to participate in various processes including vesicular trafficking. Neuroendocrine cells release hormones and neuropeptides through calcium-regulated exocytosis, a process that is coordinated by a fine remodeling of the actin cytoskeleton. We describe here that calcium-regulated exocytosis is impaired in chromaffin and PC12 cells with reduced αII-spectrin expression levels. Using yeast two-hybrid screening, we show that neuronal Wiskott-Aldrich Syndrome protein (N-WASP) is a partner of the αII-spectrin SH3 domain and demonstrate that secretagogue-evoked N-WASP recruitment at cell periphery is blocked in the absence of αII-spectrin. Additionally, experiments performed with ectopically expressed αII-spectrin mutant unable to bind N-WASP indicated that the interaction between SH3 domain and N-WASP is pivotal for neuroendocrine secretion. Our results extend the list of spectrin interactors and strengthen the idea that αII-spectrin is an important scaffold protein that gathers crucial actin-related players of the exocytic machinery.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Cromafines/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Neuroendocrinas/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Catecolaminas/metabolismo , Bovinos , Exocitosis/fisiología , Hormona del Crecimiento/metabolismo , Proteínas de Microfilamentos/genética , Mutación , Células PC12 , Ratas , Técnicas del Sistema de Dos Híbridos , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Dominios Homologos src
8.
Neuroendocrinology ; 107(3): 228-236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949805

RESUMEN

BACKGROUND: 18F-FDOPA positron emission tomography/computed tomography (PET/CT) is a sensitive nuclear imaging technology for the diagnosis of pheochromocytomas (PHEO). However, its utility in determining predictive factors for the secretion of catecholamines remains poorly studied. METHODS: Thirty-nine histologically confirmed PHEO were included in this retrospective single-center study. Patients underwent 18F-FDOPA PET/CT before surgery, with an evaluation of several uptake parameters (standardized uptake values [SUVmax and SUVmean] and the metabolic burden [MB] calculated as follows: MB = SUVmean × tumor volume) and measurement of plasma and/or urinary metanephrine (MN), normetanephrine (NM), and chromogranin A. Thirty-five patients were screened for germline mutations in the RET, SDHx, and VHL genes. Once resected, primary cultures of 5 PHEO were used for real-time measurement of catecholamine release by carbon fiber amperometry. RESULTS: The MB of the PHEO positively correlated with 24-h urinary excretion of NM (r = 0.64, p < 0.0001), MN (r = 0.49, p = 0.002), combined MN and NM (r = 0.75, p < 0.0001), and eventually plasma free levels of NM (r = 0.55, p = 0.006). In the mutated patients (3 SDHD, 2 SDHB, 3 NF1, 1 VHL, and 3 RET), a similar correlation was observed between MB and 24-h urinary combined MN and NM (r = 0.86, p = 0.0012). For the first time, we demonstrate a positive correlation between the PHEO-to-liver SUVmax ratio and the mean number of secretory granule fusion events of the corresponding PHEO cells revealed by amperometric spikes (p = 0.01). CONCLUSION: While the 18F-FDOPA PET/CT MB of PHEO strongly correlates with the concentration of MN, amperometric recordings suggest that 18F-FDOPA uptake could be enhanced by overactivity of catecholamine exocytosis.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/metabolismo , Catecolaminas/metabolismo , Feocromocitoma/metabolismo , Neoplasias de las Glándulas Suprarrenales/diagnóstico por imagen , Adulto , Anciano , Dihidroxifenilalanina/análogos & derivados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Feocromocitoma/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos
9.
Elife ; 62017 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-29274147

RESUMEN

Doc2B is a cytosolic protein with binding sites for Munc13 and Tctex-1 (dynein light chain), and two C2-domains that bind to phospholipids, Ca2+ and SNAREs. Whether Doc2B functions as a calcium sensor akin to synaptotagmins, or in other calcium-independent or calcium-dependent capacities is debated. We here show by mutation and overexpression that Doc2B plays distinct roles in two sequential priming steps in mouse adrenal chromaffin cells. Mutating Ca2+-coordinating aspartates in the C2A-domain localizes Doc2B permanently at the plasma membrane, and renders an upstream priming step Ca2+-independent, whereas a separate function in downstream priming depends on SNARE-binding, Ca2+-binding to the C2B-domain of Doc2B, interaction with ubMunc13-2 and the presence of synaptotagmin-1. Another function of Doc2B - inhibition of release during sustained calcium elevations - depends on an overlapping protein domain (the MID-domain), but is separate from its Ca2+-dependent priming function. We conclude that Doc2B acts as a vesicle priming protein.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Células Cromafines/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/metabolismo , Sinaptotagmina I/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Células Cultivadas , Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Vesículas Secretoras/metabolismo
10.
J Neurochem ; 139(6): 943-958, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731902

RESUMEN

The molecular mechanisms for calcium-triggered membrane fusion have long been sought for, and detailed models now exist that account for at least some of the functions of the many proteins involved in the process. Key players in the fusion reaction are a group of proteins that, upon binding to calcium, trigger the merger of cargo-filled vesicles with the plasma membrane. Low-affinity, fast-kinetics calcium sensors of the synaptotagmin family - especially synaptotagmin-1 and synaptotagmin-2 - are the main calcium sensors for fast exocytosis triggering in many cell types. Their functions extend beyond fusion triggering itself, having been implicated in the calcium-dependent vesicle recruitment during activity, docking of vesicles to the plasma membrane and priming, and even in post-fusion steps, such as fusion pore expansion and endocytosis. Furthermore, synaptotagmin diversity imparts distinct properties to the release process itself. Other calcium-sensing proteins such as Munc13s and protein kinase C play important, but more indirect roles in calcium-triggered exocytosis. Because of their higher affinity, but intrinsic slower kinetics, they operate on longer temporal and spatial scales to organize assembly of the release machinery. Finally, the high-affinity synaptotagmin-7 and Doc2 (Double C2-domain) proteins are able to trigger membrane fusion in vitro, but cellular measurements in different systems show that they may participate in either fusion or vesicle priming. Here, we summarize the properties and possible interplay of (some of) the major C2-domain containing calcium sensors in calcium-triggered exocytosis. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Sistemas Neurosecretores/metabolismo , Sinaptotagminas/metabolismo , Animales , Canales de Calcio/metabolismo , Exocitosis/fisiología , Humanos
11.
Mol Biol Cell ; 27(21): 3329-3341, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27605709

RESUMEN

SNAP-25 regulates Ca2+ channels, with potentially important consequences for diseases involving an aberrant SNAP-25 expression level. How this regulation is executed mechanistically remains unknown. We investigated this question in mouse adrenal chromaffin cells and found that SNAP-25 inhibits Ca2+ currents, with the B-isoform being more potent than the A-isoform, but not when syntaxin-1 is cleaved by botulinum neurotoxin C. In contrast, syntaxin-1 inhibits Ca2+ currents independently of SNAP-25. Further experiments using immunostaining showed that endogenous or exogenous SNAP-25 expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca2+ current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca2+ channels, whereas overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca2+ currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca2+ current inhibition. We conclude that clustering of syntaxin-1 allows the cell to maintain a high syntaxin-1 expression level without compromising Ca2+ influx, and recruitment of syntaxin-1 from clusters by SNAP-25 expression makes it available for regulating Ca2+ channels. This mechanism potentially allows the cell to regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters.


Asunto(s)
Canales de Calcio/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/fisiología , Membrana Celular , Exocitosis/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Cultivo Primario de Células , Unión Proteica
12.
Endocr Relat Cancer ; 23(4): 281-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26911374

RESUMEN

Among small GTPases from the Rho family, Cdc42, RAC, and Rho are well known to mediate a large variety of cellular processes linked with cancer biology through their ability to cycle between an inactive (GDP-bound) and an active (GTP-bound) state. Guanine nucleotide exchange factors (GEFs) stimulate the exchange of GDP for GTP to generate the activated form, whereas the GTPase-activating proteins (GAPs) catalyze GTP hydrolysis, leading to the inactivated form. Modulation of Rho GTPase activity following altered expression of RHO-GEFs and/or RHO-GAPs has already been reported in various human tumors. However, nothing is known about the Rho GTPase activity or the expression of their regulators in human pheochromocytomas, a neuroendocrine tumor (NET) arising from chromaffin cells of the adrenal medulla. In this study, we demonstrate, through an ELISA-based activity assay, that Rac1 and Cdc42 activities decrease in human pheochromocytomas (PCCs) compared with the matched adjacent non-tumor tissue. Furthermore, through quantitative mass spectrometry (MS) approaches, we show that the expression of two RHO-GEF proteins, namely ARHGEF1 and FARP1, is significantly reduced in tumors compared with matched non-tumor tissue, whereas ARHGAP36 expression is increased. Moreover, siRNA-based knockdown of ARHGEF1 and FARP1 in PC12 cells leads to a significant inhibition of Rac1 and Cdc42 activities, respectively. Finally, a principal component analysis (PCA) of our dataset was able to discriminate PCC from non-tumor tissue and indicates a close correlation between Cdc42/Rac1 activity and FARP1/ARHGEF1 expression. Altogether, our findings reveal for the first time the importance of modulation of Rho GTPase activities and expression of their regulators in human PCCs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/metabolismo , Feocromocitoma/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Humanos , Células PC12 , ARN Interferente Pequeño/genética , Ratas , Factores de Intercambio de Guanina Nucleótido Rho/genética
13.
J Neurosci ; 35(42): 14172-82, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490858

RESUMEN

Synaptotagmin-1 (Syt1) is the principal Ca(2+) sensor for vesicle fusion and is also essential for vesicle docking in chromaffin cells. Docking depends on interactions of the Syt1-C2B domain with the t-SNARE SNAP25/Syntaxin1 complex and/or plasma membrane phospholipids. Here, we investigated the role of the positively charged "bottom" region of the C2B domain, proposed to help crosslink membranes, in vesicle docking and secretion in mouse chromaffin cells and in cell-free assays. We expressed a double mutation shown previously to interfere with lipid mixing between proteoliposomes and with synaptic transmission, Syt1-R398/399Q (RQ), in syt1 null mutant cells. Ultrastructural morphometry revealed that Syt1-RQ fully restored the docking defect observed previously in syt1 null mutant cells, similar to wild type Syt1 (Syt1-wt). Small unilamellar lipid vesicles (SUVs) that contained the v-SNARE Synaptobrevin2 and Syt1-R398/399Q also docked to t-SNARE-containing giant vesicles (GUVs), similar to Syt1-wt. However, unlike Syt1-wt, Syt1-RQ-induced docking was strictly PI(4,5)P2-dependent. Unlike docking, neither synchronized secretion in chromaffin cells nor Ca(2+)-triggered SUV-GUV fusion was restored by the Syt1 mutants. Finally, overexpressing the RQ-mutant in wild type cells produced no effect on either docking or secretion. We conclude that the positively charged bottom region in the C2B domain--and, by inference, Syt1-mediated membrane crosslinking--is required for triggering fusion, but not for docking. Secretory vesicles dock by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. The R398/399 mutations selectively disrupt the latter and hereby help to discriminate protein regions involved in different aspects of Syt1 function in docking and fusion. SIGNIFICANCE STATEMENT: This study provides new insights in how the two opposite sides of the C2B domain of Synaptotagmin-1 participate in secretory vesicle fusion, and in more upstream steps, especially vesicle docking. We show that the "bottom" surface of the C2B domain is required for triggering fusion, but not for docking. Synaptotagmin-1 promotes docking by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. Mutations in the C2B bottom surface (R398/399) selectively disrupt the latter. These mutations help to discriminate protein regions involved in different aspects of Synaptotagmin-1 function in docking and fusion.


Asunto(s)
Células Cromafines/metabolismo , Mutación/genética , Vesículas Sinápticas/genética , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Células Cromafines/ultraestructura , Embrión de Mamíferos , Femenino , Masculino , Fusión de Membrana/genética , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Proteínas SNARE/metabolismo , Vías Secretoras/genética , Transmisión Sináptica/genética , Vesículas Sinápticas/ultraestructura
14.
J Neurosci ; 35(31): 11045-55, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26245966

RESUMEN

Oligophrenin-1 (OPHN1) is a protein with multiple domains including a Rho family GTPase-activating (Rho-GAP) domain, and a Bin-Amphiphysin-Rvs (BAR) domain. Involved in X-linked intellectual disability, OPHN1 has been reported to control several synaptic functions, including synaptic plasticity, synaptic vesicle trafficking, and endocytosis. In neuroendocrine cells, hormones and neuropeptides stored in large dense core vesicles (secretory granules) are released through calcium-regulated exocytosis, a process that is tightly coupled to compensatory endocytosis, allowing secretory granule recycling. We show here that OPHN1 is expressed and mainly localized at the plasma membrane and in the cytosol in chromaffin cells from adrenal medulla. Using carbon fiber amperometry, we found that exocytosis is impaired at the late stage of membrane fusion in Ophn1 knock-out mice and OPHN1-silenced bovine chromaffin cells. Experiments performed with ectopically expressed OPHN1 mutants indicate that OPHN1 requires its Rho-GAP domain to control fusion pore dynamics. On the other hand, compensatory endocytosis assessed by measuring dopamine-ß-hydroxylase (secretory granule membrane) internalization is severely inhibited in Ophn1 knock-out chromaffin cells. This inhibitory effect is mimicked by the expression of a truncated OPHN1 mutant lacking the BAR domain, demonstrating that the BAR domain implicates OPHN1 in granule membrane recapture after exocytosis. These findings reveal for the first time that OPHN1 is a bifunctional protein that is able, through distinct mechanisms, to regulate and most likely link exocytosis to compensatory endocytosis in chromaffin cells.


Asunto(s)
Células Cromafines/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endocitosis/fisiología , Exocitosis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Fusión de Membrana/fisiología , Proteínas Nucleares/metabolismo , Animales , Bovinos , Membrana Celular/metabolismo , Ratones , Ratones Noqueados , Vesículas Sinápticas/metabolismo
15.
Front Endocrinol (Lausanne) ; 4: 135, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24106488

RESUMEN

Although much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid toward understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotransmitters, neuropeptides, and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval.

16.
PLoS One ; 8(8): e70638, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940613

RESUMEN

Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin's ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Cromafines/metabolismo , Dinamina II/fisiología , Animales , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Exocitosis , Expresión Génica , Fusión de Membrana , Multimerización de Proteína , Vesículas Secretoras/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-23986746

RESUMEN

Intersectins (ITSNs) are a family of highly conserved proteins with orthologs from nematodes to mammals. In vertebrates, ITSNs are encoded by two genes (itsn1 and itsn2), which act as scaffolds that were initially discovered as proteins involved in endocytosis. Further investigation demonstrated that ITSN1 is also implicated in several other processes including regulated exocytosis, thereby suggesting a role for ITSN1 in the coupling between exocytosis and endocytosis in excitatory cells. Despite a high degree of conservation amongst orthologs, ITSN function is not so well preserved as they have acquired new properties during evolution. In this review, we will discuss the role of ITSN1 and its orthologs in exo- and endocytosis, in particular in neurons and neuroendocrine cells.

18.
J Neurosci ; 33(8): 3545-56, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426682

RESUMEN

Calcium-regulated exocytosis in neuroendocrine cells and neurons is accompanied by the redistribution of phosphatidylserine (PS) to the extracellular space, leading to a disruption of plasma membrane asymmetry. How and why outward translocation of PS occurs during secretion are currently unknown. Immunogold labeling on plasma membrane sheets coupled with hierarchical clustering analysis demonstrate that PS translocation occurs at the vicinity of the secretory granule fusion sites. We found that altering the function of the phospholipid scramblase-1 (PLSCR-1) by expressing a PLSCR-1 calcium-insensitive mutant or by using chromaffin cells from PLSCR-1⁻/⁻ mice prevents outward translocation of PS in cells stimulated for exocytosis. Remarkably, whereas transmitter release was not affected, secretory granule membrane recapture after exocytosis was impaired, indicating that PLSCR-1 is required for compensatory endocytosis but not for exocytosis. Our results provide the first evidence for a role of specific lipid reorganization and calcium-dependent PLSCR-1 activity in neuroendocrine compensatory endocytosis.


Asunto(s)
Células Cromafines/metabolismo , Endocitosis/fisiología , Células Neuroendocrinas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Animales , Transporte Biológico Activo/fisiología , Bovinos , Membrana Celular/metabolismo , Células Cromafines/enzimología , Exocitosis/fisiología , Femenino , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Transgénicos , Células Neuroendocrinas/enzimología , Células PC12 , Ratas
19.
J Neurochem ; 117(4): 623-31, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21392006

RESUMEN

Rho GTPases are small GTP binding proteins belonging to the Ras superfamily which act as molecular switches that regulate many cellular function including cell morphology, cell to cell interaction, cell migration and adhesion. In neuronal cells, Rho GTPases have been proposed to regulate neuronal development and synaptic plasticity. However, the role of Rho GTPases in neurosecretion is poorly documented. In this review, we discuss data that highlight the importance of Rho GTPases and their regulators into the control of neurotransmitter and hormone release in neurons and neuroendocrine cells, respectively.


Asunto(s)
Neurosecreción/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Sistema Cromafín/fisiología , Humanos , Neurotransmisores/metabolismo , Neurotransmisores/fisiología , Células PC12 , Ratas , Transmisión Sináptica/fisiología
20.
Traffic ; 12(1): 72-88, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20880191

RESUMEN

In secretory cells, calcium-regulated exocytosis is rapidly followed by compensatory endocytosis. Neuroendocrine cells secrete hormones and neuropeptides through various modes of exo-endocytosis, including kiss-and-run, cavicapture and full-collapse fusion. During kiss-and-run and cavicapture modes, the granule membrane is maintained in an omega shape, whereas it completely merges with the plasma membrane during full-collapse mode. As the composition of the granule membrane is very different from that of the plasma membrane, a precise sorting process of granular proteins must occur. However, the fate of secretory granule membrane after full fusion exocytosis remains uncertain. Here, we investigated the mechanisms governing endocytosis of collapsed granule membranes by following internalization of antibodies labeling the granule membrane protein, dopamine-ß-hydroxylase (DBH) in cultured chromaffin cells. Using immunofluorescence and electron microscopy, we observed that after full collapse, DBH remains clustered on the plasma membrane with other specific granule markers and is subsequently internalized through vesicular structures composed mainly of granule components. Moreover, the incorporation of this recaptured granule membrane into an early endosomal compartment is dependent on clathrin and actin. Altogether, these results suggest that after full collapse exocytosis, a selective sorting of granule membrane components is facilitated by the physical preservation of the granule membrane entity on the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Células Cromafines/fisiología , Exocitosis , Células Neuroendocrinas/metabolismo , Vesículas Secretoras , Actinas/metabolismo , Animales , Bovinos , Clatrina/metabolismo , Humanos , Vesículas Secretoras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA