RESUMEN
Dissolved organic carbon (DOC) released by macroalgae supports coastal ocean carbon cycling and contributes to the total oceanic DOC pool. Salinity fluctuates substantially in coastal marine environments due to natural and anthropogenic factors, yet there is limited research on how salinity affects DOC release by ecologically important macroalgae. Here we determined the effect of short-term salinity changes on rates of DOC release by the habitat-forming fucalean seaweed Sargassum fallax (Ochrophyta). Lateral branches (~4 g) cut at the axes of mature individuals were incubated across a salinity gradient (4-46) for 24 h under a 12:12 light:dark cycle, and seawater was sampled for DOC at 0, 12, and 24 h. Physiological assays (tissue water content, net photosynthesis, respiration, tissue carbon, and nitrogen content) were undertaken at the end of the 24-h experiment. Dissolved organic carbon release increased with decreasing salinity while net photosynthesis decreased. Dissolved organic carbon release rates at the lowest salinity tested (4) were ~3.3 times greater in the light than in the dark, indicating two potential DOC release mechanisms: light-mediated active exudation and passive release linked to osmotic stress. Tissue water content decreased with increasing salinity. These results demonstrate that hyposalinity stress alters the osmotic status of S. fallax, reducing photosynthesis and increasing DOC release. This has important implications for understanding how salinity conditions encountered by macroalgae may affect their contribution to the coastal ocean carbon cycle.
Asunto(s)
Carbono , Salinidad , Sargassum , Agua de Mar , Sargassum/fisiología , Sargassum/metabolismo , Carbono/metabolismo , Agua de Mar/química , Fotosíntesis , Ciclo del CarbonoRESUMEN
When a plant is introduced to a new ecosystem it may escape from some of its coevolved herbivores. Reduced herbivore damage, and the ability of introduced plants to allocate resources from defence to growth and reproduction can increase the success of introduced species. This mechanism is known as enemy release and is known to occur in some species and situations, but not in others. Understanding the conditions under which enemy release is most likely to occur is important, as this will help us to identify which species and habitats may be most at risk of invasion. We compared in situ measurements of herbivory on 16 plant species at 12 locations within their native European and introduced Australian ranges to quantify their level of enemy release and understand the relationship between enemy release and time, space and climate. Overall, plants experienced approximately seven times more herbivore damage in their native range than in their introduced range. We found no evidence that enemy release was related to time since introduction, introduced range size, temperature, precipitation, humidity or elevation. From here, we can explore whether traits, such as leaf defences or phylogenetic relatedness to neighbouring plants, are stronger indicators of enemy release across species.
Asunto(s)
Ecosistema , Plantas , Filogenia , Australia , Herbivoria , Especies IntroducidasRESUMEN
The diversity-functioning relationship is a pillar of ecology. Two significant concepts have emerged from this relationship: redundancy, the asymptotic relationship between diversity and functioning, and multifunctionality, a monotonic relationship between diversity and multiple functions occurring simultaneously. However, multifunctional redundancy, an asymptotic relationship between diversity and multiple functions occurring simultaneously, is rarely detected in research. Here we assess whether this lack of detection is due to its true rarity, or due to systematic research error. We discuss how inconsistencies in the use of terms such as 'function' lead to mismatched research. We consider the different techniques used to calculate multifunctionality and point out a rarely considered issue: how determining a function's maximum rate affects multifunctionality metrics. Lastly, we critique how a lack of consideration of multitrophic, spatiotemporal, interactions and community assembly processes in designed experiments significantly reduces the likelihood of detecting multifunctional redundancy. Multifunctionality research up to this stage has made significant contributions to our understanding of the diversity-functioning relationship, and we believe that multifunctional redundancy is detectable with the use of appropriate methodologies.
RESUMEN
A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.
RESUMEN
Carbon sequestration is defined as the secure storage of carbon-containing molecules for >100 years, and in the context of carbon dioxide removal for climate mitigation, the origin of this CO2 is from the atmosphere. On land, trees globally sequester substantial amounts of carbon in woody biomass, and an analogous role for seaweeds in ocean carbon sequestration has been suggested. The purposeful expansion of natural seaweed beds and aquaculture systems, including into the open ocean (ocean afforestation), has been proposed as a method of increasing carbon sequestration and use in carbon trading and offset schemes. However, to verify whether CO2 fixed by seaweeds through photosynthesis leads to carbon sequestration is extremely complex in the marine environment compared to terrestrial systems, because of the need to jointly consider: the comparatively rapid turnover of seaweed biomass, tracing the fate of carbon via particulate and dissolved organic carbon pathways in dynamic coastal waters, and the key role of atmosphere-ocean CO2 exchange. We propose a Forensic Carbon Accounting approach, in which a thorough analysis of carbon flows between the atmosphere and ocean, and into and out of seaweeds would be undertaken, for assessing the magnitude of CO2 removal and robust attribution of carbon sequestration to seaweeds.
Asunto(s)
Secuestro de Carbono , Algas Marinas , Atmósfera , Dióxido de Carbono/metabolismo , Clima , Algas Marinas/metabolismoRESUMEN
Plants are subject to trade-offs among growth strategies such that adaptations for optimal growth in one condition can preclude optimal growth in another. Thus, we predicted that a plant species that responds positively to one global change treatment would be less likely than average to respond positively to another treatment, particularly for pairs of treatments that favor distinct traits. We examined plant species' abundances in 39 global change experiments manipulating two or more of the following: CO2 , nitrogen, phosphorus, water, temperature, or disturbance. Overall, the directional response of a species to one treatment was 13% more likely than expected to oppose its response to a another single-factor treatment. This tendency was detectable across the global data set, but held little predictive power for individual treatment combinations or within individual experiments. Although trade-offs in the ability to respond to different global change treatments exert discernible global effects, other forces obscure their influence in local communities.
Asunto(s)
Nitrógeno , Plantas , Aclimatación , Temperatura , AguaRESUMEN
Vulnerability to xylem cavitation is a strong predictor of drought-induced damage in forest communities. However, biotic features of the community itself can influence water availability at the individual tree-level, thereby modifying patterns of drought damage. Using an experimental forest in Tasmania, Australia, we determined the vulnerability to cavitation (leaf P50 ) of four tree species and assessed the drought-induced canopy damage of 2944 6-yr-old trees after an extreme natural drought episode. We examined how individual damage was related to their size and the density and species identity of neighbouring trees. The two co-occurring dominant tree species, Eucalyptus delegatensis and Eucalyptus regnans, were the most vulnerable to drought-induced xylem cavitation and both species suffered significantly greater damage than neighbouring, subdominant species Pomaderris apetala and Acacia dealbata. While the two eucalypts had similar leaf P50 values, E. delegatensis suffered significantly greater damage, which was strongly related to the density of neighbouring P. apetala. Damage in E. regnans was less impacted by neighbouring plants and smaller trees of both eucalypts sustained significantly more damage than larger trees. Our findings demonstrate that natural drought damage is influenced by individual plant physiology as well as the composition, physiology and density of the surrounding stand.
Asunto(s)
Sequías , Eucalyptus , Eucalyptus/fisiología , Bosques , Hojas de la Planta/fisiología , Árboles/fisiología , Agua , Xilema/fisiologíaRESUMEN
Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments-species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.
Asunto(s)
Biodiversidad , Ecosistema , PlantasRESUMEN
Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations. We measured within-species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co-occurring Acacia species to explore how traits and their variances change with aridity. Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation. Our results highlight that climate can drive consistent within-species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients.
Asunto(s)
Ecosistema , Árboles , Australia , Fenotipo , Hojas de la PlantaRESUMEN
Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
Asunto(s)
Biodiversidad , Ecosistema , Plantas , Teorema de Bayes , Cambio Climático , Actividades Humanas , HumanosRESUMEN
Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.
Asunto(s)
Ciclo del Carbono , Ecosistema , Carbono , China , Europa (Continente)RESUMEN
Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO2 response offset each other, constraining the response of ecosystem productivity to rising CO2. This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO2 could be substantially less than anticipated.
Asunto(s)
Dióxido de Carbono , Pradera , Biomasa , Clima , Estaciones del AñoRESUMEN
Elevated CO2 is widely accepted to enhance terrestrial carbon sink, especially in arid and semi-arid regions. However, great uncertainties exist for the CO2 fertilisation effects, particularly when its interactions with other global change factors are considered. A four-factor (CO2 , temperature, precipitation and nitrogen) experiment revealed that elevated CO2 did not affect either gross ecosystem productivity or ecosystem respiration, and consequently resulted in no changes of net ecosystem productivity in a semi-arid grassland despite whether temperature, precipitation and nitrogen were elevated or not. The observations could be primarily attributable to the offset of ecosystem carbon uptake by enhanced soil carbon release under CO2 enrichment. Our findings indicate that arid and semi-arid ecosystems may not be sensitive to CO2 enrichment as previously expected and highlight the urgent need to incorporate this mechanism into most IPCC carbon-cycle models for convincing projection of terrestrial carbon sink and its feedback to climate change.
Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Pradera , Carbono , Ciclo del Carbono , EcosistemaRESUMEN
The responses of species to environmental changes will determine future community composition and ecosystem function. Many syntheses of global change experiments examine the magnitude of treatment effect sizes, but we lack an understanding of how plant responses to treatments compare to ongoing changes in the unmanipulated (ambient or background) system. We used a database of long-term global change studies manipulating CO2 , nutrients, water, and temperature to answer three questions: (a) How do changes in plant species abundance in ambient plots relate to those in treated plots? (b) How does the magnitude of ambient change in species-level abundance over time relate to responsiveness to global change treatments? (c) Does the direction of species-level responses to global change treatments differ from the direction of ambient change? We estimated temporal trends in plant abundance for 791 plant species in ambient and treated plots across 16 long-term global change experiments yielding 2,116 experiment-species-treatment combinations. Surprisingly, for most species (57%) the magnitude of ambient change was greater than the magnitude of treatment effects. However, the direction of ambient change, whether a species was increasing or decreasing in abundance under ambient conditions, had no bearing on the direction of treatment effects. Although ambient communities are inherently dynamic, there is now widespread evidence that anthropogenic drivers are directionally altering plant communities in many ecosystems. Thus, global change treatment effects must be interpreted in the context of plant species trajectories that are likely driven by ongoing environmental changes.
Asunto(s)
Biodiversidad , Cambio Climático , Fenómenos Fisiológicos de las Plantas , Dióxido de Carbono , Ecosistema , Temperatura , AguaRESUMEN
Background and aims: Global warming is expected to increase the mortality rate of established plants in water-limited systems because of its effect on evapotranspiration. The rising CO 2 concentration ([CO 2 ]), however, should have the opposite effect because it reduces plant transpiration, delaying the onset of drought. This potential for elevated [CO 2 ] (eCO 2 ) to modify the warming effect on mortality should be related to prevailing moisture conditions. This study aimed to determine the impacts of warming by 2 °C and eCO 2 (550 µmol mol -1 ) on plant mortality in an Australian temperate grassland over a 6-year period and to test how interannual variation in rainfall influenced treatment effects. Methods: Analyses were based on results from a field experiment, TasFACE, in which grassland plots were exposed to a combination of eCO 2 by free air CO 2 enrichment (FACE) and warming by infrared heaters. Using an annual census of established plants and detailed estimates of recruitment, annual mortality of all established plants was calculated. The influence of rainfall amount and timing on the relative impact of treatments on mortality in each year was analysed using multiple regression techniques. Key Results: Warming and eCO 2 effects had an interactive influence on mortality which varied strongly from year to year and this variation was determined by temporal rainfall patterns. Warming tended to increase density-adjusted mortality and eCO 2 moderated that effect, but to a greater extent in years with fewer dry periods. Conclusions: These results show that eCO 2 reduced the negative effect of warming but this influence varied strongly with rainfall timing. Importantly, indices involving the amount of rainfall were not required to explain interannual variation in mortality or treatment effects on mortality. Therefore, predictions of global warming effects on plant mortality will be reliant not only on other climate change factors, but also on the temporal distribution of rainfall.
Asunto(s)
Dióxido de Carbono/análisis , Cambio Climático , Pradera , Poaceae/fisiología , Lluvia , Australia , TemperaturaRESUMEN
Background and aims: Drought leading to soil water deficit can have severe impacts on plants. Water deficit may lead to plant water stress and affect growth and chemical traits. Plant secondary metabolite (PSM) responses to water deficit vary between compounds and studies, with inconsistent reports of changes to PSM concentrations even within a single species. This disparity may result from experimental water deficit variation among studies, and so multiple water deficit treatments are used to fully assess PSM responses in a single species. Methods: Juvenile Eucalyptus globulus were grown for 8 weeks at one of ten water deficit levels based on evapotranspiration from control plants (100 %). Treatments ranged from 90 % of control evapotranspiration (mild water deficit) to 0 % of control evapotranspiration (severe water deficit) in 10 % steps. Plant biomass, foliar abscisic acid (ABA) levels, Ψ leaf , leaf C/N, selected terpenes and phenolics were quantified to assess responses to each level of water deficit relative to a control. Key Results: Withholding ≥30 % water resulted in higher foliar ABA levels and withholding ≥40 % water reduced leaf water content. Ψ leaf became more negative when ≥60 % water was withheld. Plant biomass was lower when ≥80 % water was withheld, and no water for 8 weeks (0 % water) resulted in plant death. The total oil concentration was lower and C/N was higher in dead and desiccated juvenile E. globulus leaves (0 % water). Concentrations of individual phenolic and terpene compounds, along with condensed tannin and total phenolic concentrations, remained stable regardless of water deficit or plant stress level. Conclusions: These juvenile E. globulus became stressed with a moderate reduction in available water, and yet the persistent concentrations of most PSMs in highly stressed or dead plants suggests no PSM re-metabolization and continued ecological roles of foliar PSMs during drought.
Asunto(s)
Sequías , Eucalyptus/metabolismo , Agua/metabolismo , Desecación , Hojas de la Planta/metabolismo , Transpiración de PlantasRESUMEN
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation and evapotranspiration (ET), ultimately driving changes in plant growth, hydrology, and the global carbon balance. Direct leaf biochemical effects have been widely investigated, whereas indirect effects, although documented, elude explicit quantification in experiments. Here, we used a mechanistic model to investigate the relative contributions of direct (through carbon assimilation) and indirect (via soil moisture savings due to stomatal closure, and changes in leaf area index) effects of elevated CO2 across a variety of ecosystems. We specifically determined which ecosystems and climatic conditions maximize the indirect effects of elevated CO2 The simulations suggest that the indirect effects of elevated CO2 on net primary productivity are large and variable, ranging from less than 10% to more than 100% of the size of direct effects. For ET, indirect effects were, on average, 65% of the size of direct effects. Indirect effects tended to be considerably larger in water-limited ecosystems. As a consequence, the total CO2 effect had a significant, inverse relationship with the wetness index and was directly related to vapor pressure deficit. These results have major implications for our understanding of the CO2 response of ecosystems and for global projections of CO2 fertilization, because, although direct effects are typically understood and easily reproducible in models, simulations of indirect effects are far more challenging and difficult to constrain. Our findings also provide an explanation for the discrepancies between experiments in the total CO2 effect on net primary productivity.
RESUMEN
Biofouling in canals and pipelines used for hydroelectric power generation decreases the flow capacity of conduits. A pipeline rig was designed consisting of test sections of varying substrata (PVC, painted steel) and light levels (transparent, frosted, opaque). Stalk-forming diatoms were abundant in both the frosted and transparent PVC pipes but negligible in the painted steel and opaque PVC pipes. Fungi were slightly more abundant in the painted steel pipe but equally present in all the other pipes while bacterial diversity was similar in all pipes. Photosynthetically functional biofouling (mainly diatoms) was able to develop in near darkness. Different biological fouling compositions generated differing friction factors. The highest friction factor was observed in the transparent pipe (densest diatom fouling), the lowest peak friction for the opaque PVC pipe (lowest fouling biomass), and with the painted steel pipe (high fouling biomass, but composed of fungal and bacterial crusts) being intermediate between the opaque and frosted PVC pipes.