Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 17: 49-62, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31220779

RESUMEN

MicroRNA-15a (miR-15a) and miR-16, which are transcribed from the miR-15a/miR-16-1 cluster, inhibit post-ischemic angiogenesis. MicroRNA (miRNA) binding to mRNA coding sequences (CDSs) is a newly emerging mechanism of gene expression regulation. We aimed to (1) identify new mediators of the anti-angiogenic action of miR-15a and -16, (2) develop an adenovirus (Ad)-based miR-15a/16 decoy system carrying a luciferase reporter (Luc) to both sense and inhibit miR-15a/16 activity, and (3) investigate Ad.Luc-Decoy-15a/16 therapeutic potential in a mouse limb ischemia (LI) model. LI increased miR-15a and -16 expression in mouse muscular endothelial cells (ECs). The miRNAs also increased in cultured human umbilical vein ECs (HUVECs) exposed to serum starvation, but not hypoxia. Using bioinformatic tools and luciferase activity assays, we characterized miR-15a and -16 binding to Tie2 CDS. In HUVECs, miR-15a or -16 overexpression reduced Tie2 at the protein, but not the mRNA, level. Conversely, miR-15a or -16 inhibition improved angiogenesis in a Tie2-dependent manner. Local Ad.Luc-Decoy-15a/16 delivery increased Tie2 levels in ischemic skeletal muscle and improved post-LI angiogenesis and perfusion recovery, with reduced toe necrosis. Bioluminescent imaging (in vivo imaging system [IVIS]) provided evidence that the Ad.Luc-Decoy-15a/16 system responds to miR-15a/16 increases. In conclusion, we have provided novel mechanistic evidence of the therapeutic potential of local miR-15a/16 inhibition in LI.

2.
Sci Rep ; 8(1): 13316, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190567

RESUMEN

Methods to protect against radiation-induced lung injury (RILI) will facilitate the development of more effective radio-therapeutic protocols for lung cancer and may provide the means to protect the wider population in the event of a deliberate or accidental nuclear or radiological event. We hypothesised that supplementing lipid membranes through nebulization of synthetic lamellar lipids would mitigate RILI. Following pre-treatment with either nebulised lamellar lipids or saline, anaesthetised sheep were prescribed fractionated radiotherapy (30 Gray (Gy) total dose in five 6 Gy fractions at 3-4 days intervals) to a defined unilateral lung volume. Gross pathology in radio-exposed lung 37 days after the first radiation treatment was consistent between treatment groups and consisted of deep red congestion evident on the pleural surface and firmness on palpation. Consistent histopathological features in radio-exposed lung were subpleural, periarteriolar and peribronchial intra-alveolar oedema, alveolar fibrosis, interstitial pneumonia and type II pneumocyte hyperplasia. The synthetic lamellar lipids abrogated radiation-induced alveolar fibrosis and reduced alpha-smooth muscle actin (ASMA) expression in radio-exposed lung compared to saline treated sheep. Administration of synthetic lamellar lipids was also associated with an increased number of cells expressing dendritic cell-lysosomal associated membrane protein throughout the lung.


Asunto(s)
Lípidos/farmacología , Alveolos Pulmonares , Traumatismos Experimentales por Radiación , Neumonitis por Radiación , Administración por Inhalación , Animales , Femenino , Masculino , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Neumonitis por Radiación/tratamiento farmacológico , Neumonitis por Radiación/metabolismo , Neumonitis por Radiación/patología , Ovinos
3.
Arterioscler Thromb Vasc Biol ; 35(3): 664-74, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25614281

RESUMEN

OBJECTIVE: Gestational diabetes mellitus (GDM) produces fetal hyperglycemia with increased lifelong risks for the exposed offspring of cardiovascular and other diseases. Epigenetic mechanisms induce long-term gene expression changes in response to in utero environmental perturbations. Moreover, microRNAs (miRs) control the function of endothelial cells (ECs) under physiological and pathological conditions and can target the epigenetic machinery. We investigated the functional and expressional effect of GDM on human fetal ECs of the umbilical cord vein (HUVECs). We focused on miR-101 and 1 of its targets, enhancer of zester homolog-2 (EZH2), which trimethylates the lysine 27 of histone 3, thus repressing gene transcription. EZH2 exists as isoforms α and ß. APPROACH AND RESULTS: HUVECs were prepared from GDM or healthy pregnancies and tested in apoptosis, migration, and Matrigel assays. GDM-HUVECs demonstrated decreased functional capacities, increased miR-101 expression, and reduced EZH2- ß and trimethylation of histone H3 on lysine 27 levels. MiR-101 inhibition increased EZH2 expression and improved GDM-HUVEC function. Healthy HUVECs were exposed to high or normal d-glucose concentration for 48 hours and then tested for miR-101 and EZH2 expression. Similar to GDM, high glucose increased miR-101 expression. Chromatin immunoprecipitation using an antibody for EZH2 followed by polymerase chain reaction analyses for miR-101 gene promoter regions showed that both GDM and high glucose concentration reduced EZH2 binding to the miR-101 locus in HUVECs. Moreover, EZH2-ß overexpression inhibited miR-101 promoter activity in HUVECs. CONCLUSIONS: GDM impairs HUVEC function via miR-101 upregulation. EZH2 is both a transcriptional inhibitor and a target gene of miR-101 in HUVECs, and it contributes to some of the miR-101-induced defects of GDM-HUVECs.


Asunto(s)
Diabetes Gestacional/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , MicroARNs/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Apoptosis , Sitios de Unión , Estudios de Casos y Controles , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/patología , Diabetes Gestacional/fisiopatología , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Edad Gestacional , Glucosa/metabolismo , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Metilación , Neovascularización Fisiológica , Fenotipo , Complejo Represivo Polycomb 2/genética , Embarazo , Regiones Promotoras Genéticas , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Transfección , Regulación hacia Arriba
4.
Stem Cell Res Ther ; 4(2): 36, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23618383

RESUMEN

INTRODUCTION: Differentiation of vascular endothelial cells (ECs) in clinically relevant numbers for injection into ischaemic areas could offer therapeutic potential in the treatment of cardiovascular conditions, including myocardial infarction, peripheral vascular disease and stroke. While we and others have demonstrated successful generation of functional endothelial-like cells from human embryonic stem cells (hESCs), little is understood regarding the complex transcriptional and epigenetic changes that occur during differentiation, in particular during early commitment to a mesodermal lineage. METHODS: We performed the first gene expression microarray study of hESCs undergoing directed differentiation to ECs using a monolayer-based, feeder-free and serum-free protocol. Microarray results were confirmed by quantitative RT-PCR and immunocytochemistry, and chromatin immunoprecipitation (ChIP)-PCR analysis was utilised to determine the bivalent status of differentially expressed genes. RESULTS: We identified 22 transcription factors specific to early mesoderm commitment. Among these factors, FOXA2 was observed to be the most significantly differentially expressed at the hESC-EC day 2 timepoint. ChIP-PCR analysis revealed that the FOXA2 transcription start site is bivalently marked with histone modifications for both gene activation (H3K4me3) and repression (H3K27me3) in hESCs, suggesting the transcription factor may be a key regulator of hESC differentiation. CONCLUSION: This enhanced knowledge of the lineage commitment process will help improve the design of directed differentiation protocols, increasing the yield of endothelial-like cells for regenerative medicine therapies in cardiovascular disease.


Asunto(s)
Células Endoteliales/citología , Perfilación de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/metabolismo , Mesodermo/metabolismo , Diferenciación Celular , Línea Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Epigénesis Genética , Factor Nuclear 3-beta del Hepatocito/genética , Histonas/metabolismo , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Stem Cells ; 30(4): 643-54, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22232059

RESUMEN

MicroRNAs (miRNAs) are short noncoding RNAs, which post-transcriptionally regulate gene expression. miRNAs are transcribed as precursors and matured to active forms by a series of enzymes, including Dicer. miRNAs are important in governing cell differentiation, development, and disease. We have recently developed a feeder- and serum-free protocol for direct derivation of endothelial cells (ECs) from human embryonic stem cells (hESCs) and provided evidence of increases in angiogenesis-associated miRNAs (miR-126 and -210) during the process. However, the functional role of miRNAs in hESC differentiation to vascular EC remains to be fully interrogated. Here, we show that the reduction of miRNA maturation induced by Dicer knockdown suppressed hES-EC differentiation. A miRNA microarray was performed to quantify hES-EC miRNA profiles during defined stages of endothelial differentiation. miR-99b, -181a, and -181b were identified as increasing in a time- and differentiation-dependent manner to peak in mature hESC-ECs and adult ECs. Augmentation of miR-99b, -181a, and -181b levels by lentiviral-mediated transfer potentiated the mRNA and protein expression of EC-specific markers, Pecam1 and VE Cadherin, increased nitric oxide production, and improved hES-EC-induced therapeutic neovascularization in vivo. Conversely, knockdown did not impact endothelial differentiation. Our results suggest that miR-99b, -181a, and -181b comprise a component of an endothelial-miRNA signature and are capable of potentiating EC differentiation from pluripotent hESCs.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Endoteliales/citología , MicroARNs/genética , Adulto , Biomarcadores/metabolismo , Línea Celular , Linaje de la Célula/genética , ARN Helicasas DEAD-box/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Lentivirus/genética , MicroARNs/metabolismo , Neovascularización Fisiológica/genética , Óxido Nítrico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reproducibilidad de los Resultados , Ribonucleasa III/metabolismo , Transcriptoma/genética
6.
Vascul Pharmacol ; 55(4): 69-78, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21854874

RESUMEN

Human embryonic stem cells (hESC) offer broad potential for regenerative medicine owing to their capacity for self renewal, exponential scale up and differentiation into any cell type in the adult body. hESC have been proposed as a potentially unlimited source for the generation of transplantable, healthy, functional vascular cells for repair of ischemic tissues. To optimally harness this potential necessitates precise control over biological processes that govern maintenance, pluripotency and cell differentiation including signalling cascades, gene expression profiles and epigenetic modification. Such control may be elicited by microRNAs, which are powerful negative regulators of gene expression. Here, we review the role for miRNAs in both the maintenance of pluripotency and differentiation of cells to a cardiovascular lineage including endothelial cells, vascular smooth muscle cells and cardiomyocytes and put this into context for regenerative medicine in the cardiovascular system.


Asunto(s)
Moduladores de la Angiogénesis/metabolismo , MicroARNs/fisiología , Neovascularización Fisiológica , Células Madre Pluripotentes/metabolismo , Moduladores de la Angiogénesis/agonistas , Moduladores de la Angiogénesis/antagonistas & inhibidores , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Humanos , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neovascularización Patológica/metabolismo , Células Madre Pluripotentes/citología , Medicina Regenerativa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...