Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(20): R1058-R1060, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37875081

RESUMEN

Many chloroplast-bearing plants and algae lost their photosynthetic activity during evolution but retained their chloroplasts for other functions. A group of dinoflagellate algae apparently lost one half of their photosynthetic machinery but retained the other, providing a novel mechanism for light perception.


Asunto(s)
Dinoflagelados , Plastidios , Plastidios/genética , Plastidios/metabolismo , Cloroplastos/metabolismo , Plantas , Fotosíntesis , Evolución Molecular
2.
PLoS Biol ; 21(3): e3001970, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862663

RESUMEN

It is possible to generate small amounts of electrical power directly from photosynthetic microorganisms-arguably the greenest of green energy. But will it have useful applications, and what are the hurdles if so?


Asunto(s)
Electricidad , Fotosíntesis
3.
Curr Biol ; 33(5): R185-R187, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36917940

RESUMEN

Many eukaryotes acquired chloroplasts by endosymbiotic acquisition of photosynthetic bacteria or already-domesticated chloroplasts from other eukaryotes. However, the ciliate Mesodinium rubrum acquires the nucleus of a photosynthetic eukaryote, as well as its chloroplast, resulting in dramatic metabolic remodelling in the ciliate.


Asunto(s)
Cilióforos , Fotosíntesis , Cloroplastos/metabolismo , Núcleo Celular/metabolismo , Células Eucariotas
4.
Nature ; 615(7954): 836-840, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949188

RESUMEN

Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H2 evolution or CO2 fixation1,2. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems3. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems4,5. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Factores de Tiempo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Cianobacterias/metabolismo , Electrones , Termodinámica
5.
Sci Adv ; 8(18): eabm5091, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507663

RESUMEN

Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization. In this work, we developed a strong, unidirectional, redox-responsive promoter before deriving a mutant promoter library with a spectrum of strengths. We constructed genetic circuits with these parts and demonstrated their activation by multiple classes of redox molecules. Last, we demonstrated electrochemical activation of gene expression under aerobic conditions using a novel, modular bioelectrochemical device. These genetic and electrochemical tools facilitate the design and improve the performance of electrogenetic systems. Furthermore, the genetic design strategies used can be applied to other redox-responsive promoters to further expand the available tools for electrogenetics.

6.
Nat Mater ; 21(7): 811-818, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256790

RESUMEN

The rewiring of photosynthetic biomachineries to electrodes is a forward-looking semi-artificial route for sustainable bio-electricity and fuel generation. Currently, it is unclear how the electrode and biomaterial interface can be designed to meet the complex requirements for high biophotoelectrochemical performance. Here we developed an aerosol jet printing method for generating hierarchical electrode structures using indium tin oxide nanoparticles. We printed libraries of micropillar array electrodes varying in height and submicrometre surface features, and studied the energy/electron transfer processes across the bio-electrode interfaces. When wired to the cyanobacterium Synechocystis sp. PCC 6803, micropillar array electrodes with microbranches exhibited favourable biocatalyst loading, light utilization and electron flux output, ultimately almost doubling the photocurrent of state-of-the-art porous structures of the same height. When the micropillars' heights were increased to 600 µm, milestone mediated photocurrent densities of 245 µA cm-2 (the closest thus far to theoretical predictions) and external quantum efficiencies of up to 29% could be reached. This study demonstrates how bio-energy from photosynthesis could be more efficiently harnessed in the future and provide new tools for three-dimensional electrode design.


Asunto(s)
Fotosíntesis , Synechocystis , Electricidad , Electrodos , Impresión Tridimensional
7.
FEBS Lett ; 596(12): 1533-1543, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35353903

RESUMEN

Cyanobacteria employ two-component sensor-response regulator systems to monitor and respond to environmental challenges. The response regulators RpaA, RpaB, Rre1 and RppA are integral to circadian clock function and abiotic stress acclimation in cyanobacteria. RpaA, RpaB and Rre1 are known to interact with ferredoxin or thioredoxin, raising the possibility of their thiol regulation. Here, we report that Synechocystis sp. PCC 6803 Rre1, RpaA and RpaB exist as higher-order oligomers under oxidising conditions and that reduced thioredoxin A converts them to monomers. We further show that these response regulators contain redox-responsive cysteine residues with an Em7 around -300 mV. These findings suggest a direct thiol modulation of the activity of these response regulators, independent of their cognate sensor kinases.


Asunto(s)
Synechocystis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Oxidación-Reducción , Compuestos de Sulfhidrilo , Synechocystis/genética , Synechocystis/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
8.
Photosynth Res ; 151(1): 61-69, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34390453

RESUMEN

Absorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem. However, these instruments are not universally available in biology laboratories, for reasons such as cost. Here, we describe a novel, rapid, and inexpensive technique that minimises the effect of light scattering when performing whole-cell spectroscopy. This method involves using a custom made dual compartment cuvette containing titanium dioxide in one chamber as a scattering agent. Measurements were conducted of a range of different photosynthetic micro-organisms of varying cell size and morphology, including cyanobacteria, eukaryotic microalgae and a purple non-sulphur bacterium. A concentration of 1 mg ml-1 titanium dioxide, using a spectrophotometer with a slit width of 5 nm, produced spectra for cyanobacteria and microalgae similar (1-4% difference) to those obtained using an integrating sphere. The spectrum > 520 nm was similar to that with an integrating sphere with the purple non-sulphur bacterium. This system produced superior results to those obtained using a recently reported method, the application of the diffusing agent, Scotch™ Magic tape, to the side of the cuvette. The protocol can be completed in an equivalent period of time to standard whole-cell absorbance spectroscopy techniques, and is, in principle, suitable for any dual-beam spectrophotometer.


Asunto(s)
Cianobacterias , Fotones , Fotosíntesis , Dispersión de Radiación , Espectrofotometría , Análisis Espectral
9.
ACS Synth Biol ; 10(9): 2167-2178, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34431288

RESUMEN

The phototrophic bacterium Rhodopseudomonas palustris is emerging as a promising biotechnological chassis organism, due to its resilience to a range of harsh conditions, a wide metabolic repertoire, and the ability to quickly regenerate ATP using light. However, realization of this promise is impeded by a lack of efficient, rapid methods for genetic modification. Here, we present optimized tools for generating chromosomal insertions and deletions employing electroporation as a means of transformation. Generation of markerless strains can be completed in 12 days, approximately half the time for previous conjugation-based methods. This system was used for overexpression of alternative nitrogenase isozymes with the aim of improving biohydrogen productivity. Insertion of the pucBa promoter upstream of vnf and anf nitrogenase operons drove robust overexpression up to 4000-fold higher than wild-type. Transcript quantification was facilitated by an optimized high-quality RNA extraction protocol employing lysis using detergent and heat. Overexpression resulted in increased nitrogenase protein levels, extending to superior hydrogen productivity in bioreactor studies under nongrowing conditions, where promoter-modified strains better utilized the favorable energy state created by reduced competition from cell division. Robust heterologous expression driven by the pucBa promoter is thus attractive for energy-intensive biosyntheses suited to the capabilities of R. palustris. Development of this genetic modification toolset will accelerate the advancement of R. palustris as a biotechnological chassis organism, and insights into the effects of nitrogenase overexpression will guide future efforts in engineering strains for improved hydrogen production.


Asunto(s)
Nitrogenasa/metabolismo , Rhodopseudomonas/metabolismo , Electroporación , Ingeniería Genética/métodos , Hidrógeno/química , Hidrógeno/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Nitrogenasa/genética , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Rhodopseudomonas/genética
10.
Chem Sci ; 12(9): 3328-3338, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34164103

RESUMEN

Bioelectrochemical approaches for energy conversion rely on efficient wiring of natural electron transport chains to electrodes. However, state-of-the-art exogenous electron mediators give rise to significant energy losses and, in the case of living systems, long-term cytotoxicity. Here, we explored new selection criteria for exogenous electron mediation by examining phenazines as novel low-midpoint potential molecules for wiring the photosynthetic electron transport chain of the cyanobacterium Synechocystis sp. PCC 6803 to electrodes. We identified pyocyanin (PYO) as an effective cell-permeable phenazine that can harvest electrons from highly reducing points of photosynthesis. PYO-mediated photocurrents were observed to be 4-fold higher than mediator-free systems with an energetic gain of 200 mV compared to the common high-midpoint potential mediator 2,6-dichloro-1,4-benzoquinone (DCBQ). The low-midpoint potential of PYO led to O2 reduction side-reactions, which competed significantly against photocurrent generation; the tuning of mediator concentration was important for outcompeting the side-reactions whilst avoiding acute cytotoxicity. DCBQ-mediated photocurrents were generally much higher but also decayed rapidly and were non-recoverable with fresh mediator addition. This suggests that the cells can acquire DCBQ-resistance over time. In contrast, PYO gave rise to steadier current enhancement despite the co-generation of undesirable reactive oxygen species, and PYO-exposed cells did not develop acquired resistance. Moreover, we demonstrated that the cyanobacteria can be genetically engineered to produce PYO endogenously to improve long-term prospects. Overall, this study established that energetic gains can be achieved via the use of low-potential phenazines in photosynthetic bioelectrochemical systems, and quantifies the factors and trade-offs that determine efficacious mediation in living bioelectrochemical systems.

11.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34165554

RESUMEN

During photosynthesis, electrons are transferred between the cytochrome b6f complex and photosystem I. This is carried out by the protein plastocyanin in plant chloroplasts, or by either plastocyanin or cytochrome c6 in many cyanobacteria and eukaryotic algal species. There are three further cytochrome c6 homologs: cytochrome c6A in plants and green algae, and cytochromes c6B and c6C in cyanobacteria. The function of these proteins is unknown. Here, we present a comprehensive analysis of the evolutionary relationship between the members of the cytochrome c6 family in photosynthetic organisms. Our phylogenetic analyses show that cytochromes c6B and c6C are likely to be orthologs that arose from a duplication of cytochrome c6, but that there is no evidence for separate origins for cytochromes c6B and c6C. We therefore propose renaming cytochrome c6C as cytochrome c6B. We show that cytochrome c6A is likely to have arisen from cytochrome c6B rather than by an independent duplication of cytochrome c6, and present evidence for an independent origin of a protein with some of the features of cytochrome c6A in peridinin dinoflagellates. We conclude with a new comprehensive model of the evolution of the cytochrome c6 family which is an integral part of understanding the function of the enigmatic cytochrome c6 homologs.


Asunto(s)
Citocromos c6 , Citocromos/metabolismo , Citocromos c6/genética , Citocromos c6/metabolismo , Transporte de Electrón , Electrones , Fotosíntesis/genética , Filogenia
12.
J Biosci Bioeng ; 131(5): 491-500, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33610455

RESUMEN

Cyanobacteria hold promise as cell factories for the photoautotrophic conversion of carbon dioxide to useful chemicals. For the eventual commercial viability of such processes, cyanobacteria need to be engineered for (i) efficient channeling of carbon flux toward the product of interest and (ii) improved product tolerance, the latter being the focus of this study. We chose the recently reported, fast-growing, high light and CO2 tolerant cyanobacterium Synechococcus elongatus PCC 11801 for adaptive laboratory evolution. In two parallel experiments that lasted over 8400 h of culturing and 100 serial passages, S. elongatus PCC 11801 was evolved to tolerate 5 g/L n-butanol or 30 g/L 2,3-butanediol representing a 100% improvement in concentrations tolerated. The evolved strains retained alcohol tolerance even after being passaged several times without the alcohol stress suggesting that the changes were permanent. Whole genome sequencing of the n-butanol evolved strains revealed mutations in a number of stress responsive genes encoding translation initiation factors, RpoB and an ABC transporter. In 2,3-butanediol evolved strains, genes for ClpC, a different ABC transporter, glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase were found to be mutated. Furthermore, the evolved strains showed significant improvement in tolerance toward several other alcohols. Notably, the n-butanol evolved strain could tolerate up to 32 g/L ethanol, thereby making it a promising host for photosynthetic production of biofuels via metabolic engineering.


Asunto(s)
Evolución Molecular Dirigida , Solventes/farmacología , Synechococcus/efectos de los fármacos , Synechococcus/genética , Alcoholes/farmacología , Biocombustibles , Dióxido de Carbono/metabolismo , Fotosíntesis/efectos de los fármacos , Synechococcus/metabolismo
13.
Plant Physiol ; 183(2): 700-716, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32317358

RESUMEN

Photomixotrophy is a metabolic state that enables photosynthetic microorganisms to simultaneously perform photosynthesis and metabolism of imported organic carbon substrates. This process is complicated in cyanobacteria, since many, including Synechocystis sp. PCC 6803, conduct photosynthesis and respiration in an interlinked thylakoid membrane electron transport chain. Under photomixotrophy, the cell must therefore tightly regulate electron fluxes from photosynthetic and respiratory complexes. In this study, we demonstrate, via characterization of photosynthetic apparatus and the proteome, that photomixotrophic growth results in a gradual inhibition of QA - reoxidation in wild-type Synechocystis, which largely decreases photosynthesis over 3 d of growth. This process is circumvented by deleting the gene encoding cytochrome c M (CytM), a cryptic c-type heme protein widespread in cyanobacteria. The ΔCytM strain maintained active photosynthesis over the 3-d period, demonstrated by high photosynthetic O2 and CO2 fluxes and effective yields of PSI and PSII. Overall, this resulted in a higher growth rate compared to that of the wild type, which was maintained by accumulation of proteins involved in phosphate and metal uptake, and cofactor biosynthetic enzymes. While the exact role of CytM has not been determined, a mutant deficient in the thylakoid-localized respiratory terminal oxidases and CytM (ΔCox/Cyd/CytM) displayed a phenotype similar to that of ΔCytM under photomixotrophy. This, in combination with other physiological data, and in contrast to a previous hypothesis, suggests that CytM does not transfer electrons to these complexes. In summary, our data suggest that CytM may have a regulatory role in photomixotrophy by modulating the photosynthetic capacity of cells.


Asunto(s)
Citocromos c/metabolismo , Transporte de Electrón/fisiología , Fotosíntesis/fisiología , Synechocystis/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Electrón/genética , Oxígeno/metabolismo , Fotosíntesis/genética , Synechocystis/genética
15.
Nat Methods ; 17(5): 481-494, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251396

RESUMEN

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Asunto(s)
ADN/administración & dosificación , Eucariontes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Biología Marina , Modelos Biológicos , Transformación Genética , Biodiversidad , Ecosistema , Ambiente , Eucariontes/clasificación , Especificidad de la Especie
16.
ChemElectroChem ; 6(21): 5375-5386, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31867153

RESUMEN

Biophotovoltaic systems (BPVs) resemble microbial fuel cells, but utilise oxygenic photosynthetic microorganisms associated with an anode to generate an extracellular electrical current, which is stimulated by illumination. Study and exploitation of BPVs have come a long way over the last few decades, having benefited from several generations of electrode development and improvements in wiring schemes. Power densities of up to 0.5 W m-2 and the powering of small electrical devices such as a digital clock have been reported. Improvements in standardisation have meant that this biophotoelectrochemical phenomenon can be further exploited to address biological questions relating to the organisms. Here, we aim to provide both biologists and electrochemists with a review of the progress of BPV development with a focus on biological materials, electrode design and interfacial wiring considerations, and propose steps for driving the field forward.

17.
Microorganisms ; 7(12)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795453

RESUMEN

A novel mediatorless photo-bioelectrochemical sensor operated with a biofilm of the cyanobacterium Synechocystis PCC6803 wt. for herbicide detection with long term stability (>20 days) was successfully developed and tested. Photoanodic current generation was obtained in the absence of artificial mediators. The inhibitory effect on photocurrent of three commonly used herbicides (i.e., atrazine, diuron, and paraquat) was used as a means of measuring their concentrations in aqueous solution. The injection of atrazine and diuron into the algal medium caused an immediate photocurrent drop due to the inhibition of photosynthetic electron transport. The detected concentrations were suitable for environmental analysis, as revealed by a comparison with the freshwater quality benchmarks set by the Environmental Protection Agency of the United States (US EPA). In contrast, paraquat caused an initial increase (~2 h) of the photocurrent effect of about 200%, as this compound can act as a redox mediator between the cells and the anode. A relatively long-term stability of the biosensor was demonstrated, by keeping anodes colonized with cyanobacterial biofilm in the dark at 4 °C. After 22 days of storage, the performance in terms of the photocurrent was comparable with the freshly prepared biosensor. This result was confirmed by the measurement of chlorophyll content, which demonstrated preservation of the cyanobacterial biofilm. The capacity of this biosensor to recover after a cold season or other prolonged environmental stresses could be a key advantage in field applications, such as in water bodies and agriculture. This study is a step forward in the biotechnological development and implementation of storable mediatorless electrochemical biosensors for herbicide detection.

18.
Plant Physiol ; 181(4): 1721-1738, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31578229

RESUMEN

Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in Synechocystis sp. PCC 6803, ∼1000 more than previous studies. Assigned to six specific subcellular regions were 1,712 proteins. Proteins involved in energy conversion localized to TMs. The majority of transporters, with the exception of a TM-localized copper importer, resided in the plasma membrane (PM). Most metabolic enzymes were soluble, although numerous pathways terminated in the TM (notably those involved in peptidoglycan monomer, NADP+, heme, lipid, and carotenoid biosynthesis) or PM (specifically, those catalyzing lipopolysaccharide, molybdopterin, FAD, and phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM electron transport chains. The majority of ribosomal proteins and enzymes synthesizing the storage compound polyhydroxybuyrate formed distinct clusters within the data, suggesting similar subcellular distributions to one another, as expected for proteins operating within multicomponent structures. Moreover, heterogeneity within membrane regions was observed, indicating further cellular complexity. Cyanobacterial TM protein localization was conserved in Arabidopsis (Arabidopsis thaliana) chloroplasts, suggesting similar proteome organization in more developed photosynthetic organisms. Successful application of this technique in Synechocystis suggests it could be applied to mapping the proteomes of other cyanobacteria and single-celled organisms. The organization of the cyanobacterial cell revealed here substantially aids our understanding of these environmentally and biotechnologically important organisms.


Asunto(s)
Compartimento Celular , Proteoma/metabolismo , Proteómica , Synechocystis/citología , Synechocystis/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Fraccionamiento Celular , Membrana Celular/metabolismo , Pared Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Redes y Vías Metabólicas , Análisis de Componente Principal , Subunidades Ribosómicas/metabolismo , Synechocystis/ultraestructura
19.
Cell Microbiol ; 21(12): e13108, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31454137

RESUMEN

The malaria parasite Plasmodium and other apicomplexans such as Toxoplasma evolved from photosynthetic organisms and contain an essential, remnant plastid termed the apicoplast. Transcription of the apicoplast genome is polycistronic with extensive RNA processing. Yet little is known about the mechanism of apicoplast RNA processing. In plants, chloroplast RNA processing is controlled by multiple pentatricopeptide repeat (PPR) proteins. Here, we identify the single apicoplast PPR protein, PPR1. We show that the protein is essential and that it binds to RNA motifs corresponding with previously characterized processing sites. Additionally, PPR1 shields RNA transcripts from ribonuclease degradation. This is the first characterization of a PPR protein from a nonphotosynthetic plastid.


Asunto(s)
Apicoplastos/genética , Cloroplastos/genética , Filogenia , Plasmodium falciparum/genética , Toxoplasma/genética
20.
Protist ; 170(4): 358-373, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31415953

RESUMEN

The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.


Asunto(s)
Dinoflagelados/clasificación , Dinoflagelados/genética , Genoma de Protozoos/genética , Plastidios/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA