Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 11(4): 1345-1357, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30980655

RESUMEN

Meiotic recombination is crucial for chromosomal segregation and facilitates the spread of beneficial and removal of deleterious mutations. Recombination rates frequently vary along chromosomes and Drosophila melanogaster exhibits a remarkable pattern. Recombination rates gradually decrease toward centromeres and telomeres, with a dramatic impact on levels of variation in natural populations. Two close sister species, Drosophila simulans and Drosophila mauritiana do not only have higher recombination rates but also exhibit a much more homogeneous recombination rate that only drops sharply very close to centromeres and telomeres. Because certain sequence motifs are associated with recombination rate variation in D. melanogaster, we tested whether the difference in recombination landscape between D. melanogaster and D. simulans can be explained by the genomic distribution of recombination rate-associated sequence motifs. We constructed the first high-resolution recombination map for D. simulans based on 189 haplotypes from a natural D. simulans population and searched for short sequence motifs linked with higher than average recombination in both sister species. We identified five consensus motifs significantly associated with higher than average chromosome-wide recombination rates in at least one species and present in both. Testing fine resolution associations between motif density and recombination, we found strong and positive associations genome-wide over a range of scales in D. melanogaster, while the results were equivocal in D. simulans. Despite the strong association in D. melanogaster, we did not find a decreasing density of these short-repeat motifs toward centromeres and telomeres. We conclude that the density of recombination-associated repeat motifs cannot explain the large-scale recombination landscape in D. melanogaster, nor the differences to D. simulans. The strong association seen for the sequence motifs in D. melanogaster likely reflects their impact influencing local differences in recombination rates along the genome.


Asunto(s)
Drosophila melanogaster/genética , Drosophila simulans/genética , Motivos de Nucleótidos , Recombinación Genética , Animales , Cromosomas de Insectos , Femenino , Masculino
2.
Ecol Evol ; 7(23): 10103-10115, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29238540

RESUMEN

Polyandry, female mating with multiple males, is widespread across many taxa and almost ubiquitous in insects. This conflicts with the traditional idea that females are constrained by their comparatively large investment in each offspring, and so should only need to mate once or a few times. Females may need to mate multiply to gain sufficient sperm supplies to maintain their fertility, especially in species in which male promiscuity results in division of their ejaculate among many females. Here, we take a novel approach, utilizing wild-caught individuals to explore how natural variation among females and males influences fertility gains for females. We studied this in the Malaysian stalk-eyed fly species Teleopsis dalmanni. After an additional mating, females benefit from greatly increased fertility (proportion fertile eggs). Gains from multiple mating are not uniform across females; they are greatest when females have high fecundity or low fertility. Fertility gains also vary spatially, as we find an additional strong effect of the stream from which females were collected. Responses were unaffected by male mating history (males kept with females or in male-only groups). Recent male mating may be of lesser importance because males in many species, including T. dalmanni, partition their ejaculate to maintain their fertility over many matings. This study highlights the importance of complementing laboratory studies with data on wild-caught populations, where there is considerable heterogeneity between individuals. Future research should focus on environmental, demographic and genetic factors that are likely to significantly influence variation in individual female fecundity and fertility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...