Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645052

RESUMEN

Genomic scientists have long been promised cheaper DNA sequencing, but deep whole genomes are still costly, especially when considered for large cohorts in population-level studies. More affordable options include microarrays + imputation, whole exome sequencing (WES), or low-pass whole genome sequencing (WGS) + imputation. WES + array + imputation has recently been shown to yield 99% of association signals detected by WGS. However, a method free from ascertainment biases of arrays or the need for merging different data types that still benefits from deeper exome coverage to enhance novel coding variant detection does not exist. We developed a new, combined, "Blended Genome Exome" (BGE) in which a whole genome library is generated, an aliquot of that genome is amplified by PCR, the exome regions are selected and enriched, and the genome and exome libraries are combined back into a single tube for sequencing (33% exome, 67% genome). This creates a single CRAM with a low-coverage whole genome (2-3x) combined with a higher coverage exome (30-40x). This BGE can be used for imputing common variants throughout the genome as well as for calling rare coding variants. We tested this new method and observed >99% r 2 concordance between imputed BGE data and existing 30x WGS data for exome and genome variants. BGE can serve as a useful and cost-efficient alternative sequencing product for genomic researchers, requiring ten-fold less sequencing compared to 30x WGS without the need for complicated harmonization of array and sequencing data.

3.
Nat Genet ; 55(2): 198-208, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702997

RESUMEN

Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder with a major genetic component. Here, we present a genome-wide association study meta-analysis of ADHD comprising 38,691 individuals with ADHD and 186,843 controls. We identified 27 genome-wide significant loci, highlighting 76 potential risk genes enriched among genes expressed particularly in early brain development. Overall, ADHD genetic risk was associated with several brain-specific neuronal subtypes and midbrain dopaminergic neurons. In exome-sequencing data from 17,896 individuals, we identified an increased load of rare protein-truncating variants in ADHD for a set of risk genes enriched with probable causal common variants, potentially implicating SORCS3 in ADHD by both common and rare variants. Bivariate Gaussian mixture modeling estimated that 84-98% of ADHD-influencing variants are shared with other psychiatric disorders. In addition, common-variant ADHD risk was associated with impaired complex cognition such as verbal reasoning and a range of executive functions, including attention.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estudio de Asociación del Genoma Completo , Humanos , Trastorno por Déficit de Atención con Hiperactividad/genética , Encéfalo , Cognición , Predisposición Genética a la Enfermedad
4.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35917817

RESUMEN

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma Humano , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Haploinsuficiencia/genética , Humanos
5.
Nat Genet ; 54(5): 541-547, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35410376

RESUMEN

We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Proteínas de Anclaje a la Quinasa A/genética , Trastorno Bipolar/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Esquizofrenia/genética , Secuenciación del Exoma
6.
Nature ; 604(7906): 509-516, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396579

RESUMEN

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Asunto(s)
Mutación , Trastornos del Neurodesarrollo , Esquizofrenia , Estudios de Casos y Controles , Exoma , Predisposición Genética a la Enfermedad/genética , Humanos , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
7.
Cell Genom ; 2(9): 100168, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36778668

RESUMEN

Genome-wide association studies have successfully discovered thousands of common variants associated with human diseases and traits, but the landscape of rare variations in human disease has not been explored at scale. Exome-sequencing studies of population biobanks provide an opportunity to systematically evaluate the impact of rare coding variations across a wide range of phenotypes to discover genes and allelic series relevant to human health and disease. Here, we present results from systematic association analyses of 4,529 phenotypes using single-variant and gene tests of 394,841 individuals in the UK Biobank with exome-sequence data. We find that the discovery of genetic associations is tightly linked to frequency and is correlated with metrics of deleteriousness and natural selection. We highlight biological findings elucidated by these data and release the dataset as a public resource alongside the Genebass browser for rapidly exploring rare-variant association results.

8.
Elife ; 102021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467851

RESUMEN

Most age-related human diseases are accompanied by a decline in cellular organelle integrity, including impaired lysosomal proteostasis and defective mitochondrial oxidative phosphorylation. An open question, however, is the degree to which inherited variation in or near genes encoding each organelle contributes to age-related disease pathogenesis. Here, we evaluate if genetic loci encoding organelle proteomes confer greater-than-expected age-related disease risk. As mitochondrial dysfunction is a 'hallmark' of aging, we begin by assessing nuclear and mitochondrial DNA loci near genes encoding the mitochondrial proteome and surprisingly observe a lack of enrichment across 24 age-related traits. Within nine other organelles, we find no enrichment with one exception: the nucleus, where enrichment emanates from nuclear transcription factors. In agreement, we find that genes encoding several organelles tend to be 'haplosufficient,' while we observe strong purifying selection against heterozygous protein-truncating variants impacting the nucleus. Our work identifies common variation near transcription factors as having outsize influence on age-related trait risk, motivating future efforts to determine if and how this inherited variation then contributes to observed age-related organelle deterioration.


Getting older increases our risk of experiencing a wide range of diseases, such as diabetes, heart disease and neurodegenerative disease. The genetic variations that we inherit from our parents play a major role in predicting this risk. However, the biological networks involved in this process are extremely complex and remain challenging to decipher. Prior studies have suggested that specialised structures inside our body's cells, called organelles, may have an important role to play in aging. Organelles represent self-contained biological factories inside each cell, designed to perform specific tasks. Examples include the nucleus, which harbours most of the cell's genetic material, and mitochondria, which help provide cells with energy. Organelles tend to deteriorate and become dysfunctional with age, and mitochondria in particular are badly affected by the ageing process. A decline in organelle activity has been thought to explain ageing and the development of age-related diseases. However, this has never been systematically tested on a large scale at the inherited genetic level. Gupta et al. assessed whether common inherited genetic variation in genes associated with ten different organelles could affect the risk of age-related disease, using a database of DNA samples from more than 300,000 individuals. They considered 24 diseases and traits that become more common with advanced age. Gupta et al. discovered that inherited variants in or near genes associated with the nucleus were consistently linked to age-related disease risks. Most of this signal arose from genes encoding the nuclear transcription factors, proteins that help to control the rate at which genes are expressed. However, variants in genes associated with other organelles, including mitochondria, did not appear to be linked to age-related diseases. This research suggests that inherited variation in transcription factors in the nucleus could act as genetic levers that increase the risk of common, age-related diseases. It also suggests that common genetic variation in other cellular organelles may not be as heavily involved in the development of such diseases. Such insights into the cellular structures and biological pathways involved in ageing and age-related disease also establish new targets for drugs to prevent or treat disease.


Asunto(s)
Envejecimiento/genética , Variación Genética , Orgánulos/metabolismo , Carácter Cuantitativo Heredable , ADN Mitocondrial/genética , Humanos , Fosforilación Oxidativa
9.
Brain ; 143(7): 2106-2118, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32568404

RESUMEN

Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5-3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino
10.
Nat Neurosci ; 23(2): 185-193, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932770

RESUMEN

Protein-coding de novo mutations (DNMs) are significant risk factors in many neurodevelopmental disorders, whereas schizophrenia (SCZ) risk associated with DNMs has thus far been shown to be modest. We analyzed DNMs from 1,695 SCZ-affected trios and 1,077 published SCZ-affected trios to better understand the contribution to SCZ risk. Among 2,772 SCZ probands, exome-wide DNM burden remained modest. Gene set analyses revealed that SCZ DNMs were significantly concentrated in genes that were highly expressed in the brain, that were under strong evolutionary constraint and/or overlapped with genes identified in other neurodevelopmental disorders. No single gene surpassed exome-wide significance; however, 16 genes were recurrently hit by protein-truncating DNMs, corresponding to a 3.15-fold higher rate than the mutation model expectation (permuted 95% confidence interval: 1-10 genes; permuted P = 3 × 10-5). Overall, DNMs explain a small fraction of SCZ risk, and larger samples are needed to identify individual risk genes, as coding variation across many genes confers risk for SCZ in the population.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Esquizofrenia/genética , Adulto , Niño , Familia , Femenino , Humanos , Masculino , Mutación , Padres , Secuenciación del Exoma
11.
Mol Psychiatry ; 25(8): 1859-1875, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30108311

RESUMEN

The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 × 10-7), an immunoglobulin gene whose antibodies interact with ß-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 × 10-7), and a zinc-finger protein ZNF655 (gene-based p = 5.0 × 10-6). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Secuenciación del Exoma , Regulación de la Expresión Génica/genética , Inmunidad/genética , Transcripción Genética/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/inmunología , Apolipoproteínas E/genética , Femenino , Haplotipos/genética , Humanos , Inmunoglobulina G , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Polimorfismo Genético/genética , ARN Largo no Codificante/genética
14.
Nat Neurosci ; 22(12): 1966-1974, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768050

RESUMEN

To discover novel genes underlying amyotrophic lateral sclerosis (ALS), we aggregated exomes from 3,864 cases and 7,839 ancestry-matched controls. We observed a significant excess of rare protein-truncating variants among ALS cases, and these variants were concentrated in constrained genes. Through gene level analyses, we replicated known ALS genes including SOD1, NEK1 and FUS. We also observed multiple distinct protein-truncating variants in a highly constrained gene, DNAJC7. The signal in DNAJC7 exceeded genome-wide significance, and immunoblotting assays showed depletion of DNAJC7 protein in fibroblasts in a patient with ALS carrying the p.Arg156Ter variant. DNAJC7 encodes a member of the heat-shock protein family, HSP40, which, along with HSP70 proteins, facilitates protein homeostasis, including folding of newly synthesized polypeptides and clearance of degraded proteins. When these processes are not regulated, misfolding and accumulation of aberrant proteins can occur and lead to protein aggregation, which is a pathological hallmark of neurodegeneration. Our results highlight DNAJC7 as a novel gene for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Estudios de Casos y Controles , Femenino , Variación Genética/genética , Humanos , Masculino
15.
Nat Commun ; 10(1): 3043, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292440

RESUMEN

There are established associations between advanced paternal age and offspring risk for psychiatric and developmental disorders. These are commonly attributed to genetic mutations, especially de novo single nucleotide variants (dnSNVs), that accumulate with increasing paternal age. However, the actual magnitude of risk from such mutations in the male germline is unknown. Quantifying this risk would clarify the clinical significance of delayed paternity. Using parent-child trio whole-exome-sequencing data, we estimate the relationship between paternal-age-related dnSNVs and risk for five disorders: autism spectrum disorder (ASD), congenital heart disease, neurodevelopmental disorders with epilepsy, intellectual disability and schizophrenia (SCZ). Using Danish registry data, we investigate whether epidemiologic associations between each disorder and older fatherhood are consistent with the estimated role of dnSNVs. We find that paternal-age-related dnSNVs confer a small amount of risk for these disorders. For ASD and SCZ, epidemiologic associations with delayed paternity reflect factors that may not increase with age.


Asunto(s)
Pruebas Genéticas , Modelos Genéticos , Edad Paterna , Adulto , Factores de Edad , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Niño , Dinamarca/epidemiología , Epilepsia/epidemiología , Epilepsia/genética , Femenino , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Humanos , Incidencia , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , Prevalencia , Sistema de Registros/estadística & datos numéricos , Medición de Riesgo/métodos , Esquizofrenia/epidemiología , Esquizofrenia/genética , Secuenciación del Exoma
16.
Neuron ; 103(2): 217-234.e4, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31171447

RESUMEN

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).


Asunto(s)
Encéfalo/citología , Ontología de Genes , Proteómica , Programas Informáticos , Sinapsis/fisiología , Animales , Encéfalo/fisiología , Bases de Datos Genéticas , Humanos , Bases del Conocimiento , Potenciales Sinápticos/fisiología , Sinaptosomas
17.
Nat Genet ; 51(3): 431-444, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804558

RESUMEN

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Dinamarca , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Herencia Multifactorial/genética , Fenotipo , Factores de Riesgo
18.
Nat Genet ; 51(1): 63-75, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478444

RESUMEN

Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Encéfalo/fisiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Riesgo
19.
Am J Psychiatry ; 176(1): 29-35, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30392412

RESUMEN

OBJECTIVE: Both rare copy number variants (CNVs) and common single-nucleotide polymorphisms (SNPs) contribute to liability to schizophrenia, but their etiological relationship has not been fully elucidated. The authors evaluated an additive model whereby risk of schizophrenia requires less contribution from common SNPs in the presence of a rare CNV, and tested for interactions. METHOD: Genetic data from 21,094 case subjects with schizophrenia and 20,227 control subjects from the Psychiatric Genomics Consortium were examined. Three classes of rare CNVs were assessed: CNVs previously associated with schizophrenia, CNVs with large deletions ≥500 kb, and total CNV burden. The mean polygenic risk scores (PRSs) between study subjects with and without rare CNVs were compared, and joint effects of PRS and CNVs on schizophrenia liability were modeled by using logistic regression. RESULTS: Schizophrenia case subjects carrying risk CNVs had a lower polygenic risk than case subjects without risk CNVs but a higher risk than control subjects. For case subjects carrying known risk CNVs, the PRS was diminished in proportion to the effect size of the CNV. The strongly associated 22q11.2 deletion required little added PRS to produce schizophrenia. Large deletions and increased CNV burden were also associated with lower polygenic risk in schizophrenia case subjects but not in control subjects or after removal of known risk CNV carriers. CONCLUSIONS: The authors found evidence for interactive effects of PRS and previously associated CNVs for risk for schizophrenia, and the results for large deletions and total CNV burden support an additive model. These findings offer insights into the genetic architecture of schizophrenia by illuminating how different established genetic risk factors act and interact to influence liability to schizophrenia.


Asunto(s)
Variaciones en el Número de Copia de ADN , Medición de Riesgo/métodos , Esquizofrenia/genética , Adulto , Algoritmos , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Herencia Multifactorial , Polimorfismo de Nucleótido Simple
20.
Nat Commun ; 9(1): 4038, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279509

RESUMEN

Hundreds of thousands of human whole genome sequencing (WGS) datasets will be generated over the next few years. These data are more valuable in aggregate: joint analysis of genomes from many sources increases sample size and statistical power. A central challenge for joint analysis is that different WGS data processing pipelines cause substantial differences in variant calling in combined datasets, necessitating computationally expensive reprocessing. This approach is no longer tenable given the scale of current studies and data volumes. Here, we define WGS data processing standards that allow different groups to produce functionally equivalent (FE) results, yet still innovate on data processing pipelines. We present initial FE pipelines developed at five genome centers and show that they yield similar variant calling results and produce significantly less variability than sequencing replicates. This work alleviates a key technical bottleneck for genome aggregation and helps lay the foundation for community-wide human genetics studies.


Asunto(s)
Genética Humana/normas , Secuenciación Completa del Genoma/normas , Genoma Humano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA