Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 87(8): 1315-530, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23974980

RESUMEN

This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.


Asunto(s)
Técnicas de Cultivo/métodos , Hepatocitos/citología , Inactivación Metabólica , Hígado/citología , Hígado/fisiología , Pruebas de Toxicidad/métodos , Animales , Técnicas de Cocultivo , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Hígado/efectos de los fármacos , Técnicas de Cultivo de Órganos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Toxicogenética
2.
Chem Biol Interact ; 181(1): 124-37, 2009 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-19482013

RESUMEN

Cultures of primary hepatocytes from various species, including human, are used in several applications during pre-clinical drug development. Their use is however limited by cell survival and conservation of liver-specific functions in vitro. The differentiation status of hepatocytes in culture strongly depends on medium formulation and the extracellular matrix environment. We incubated primary rat hepatocytes for 10 days on collagen monolayer and in collagen sandwich cultures with or without serum. Restoration of polygonal cell shape and formation of functional bile canaliculi-like structures was stable only in serum-free sandwich cultures. Variations in general cell viability, as judged by the cellular ATP content, LDH release or apoptosis, were less pronounced between alternative cultures. The intracellular glutathione content was preserved close to in vivo levels especially in serum-free sandwich cultures. Basal activities of cytochrome P450 enzymes (P450) varied strongly between cultures. There was a minor effect on CYP1A but CYP2B activity was only detectable in the serum-free sandwich culture after 3 days and beyond. CYP2C activity was slightly elevated in both sandwich cultures, whereas CYP3A showed increased levels in both serum-free cultures. Inducibility of these P450s was fully maintained over time in serum-free collagen sandwich only. Gene expression was largely constant over time in serum-free sandwich cultures that was closest to liver. This liver-like property was supported by protein profiling results. Taken together, the serum-free collagen sandwich culture of primary rat hepatocytes maintained liver-like features over 10 days and is therefore a suitable model for long-term toxicity and drug-drug interaction studies.


Asunto(s)
Hepatocitos/efectos de los fármacos , Animales , Secuencia de Bases , Células Cultivadas , Medio de Cultivo Libre de Suero , Sondas de ADN , Interacciones Farmacológicas , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Masculino , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...