Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Discov Med ; 36(187): 1572-1587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190373

RESUMEN

BACKGROUND: Alzheimer's disease results in neurodegeneration and is characterized by an accumulation of abnormal neuritic lesions and intracellular aggregates of hyperphosphorylated Tau proteins in the cerebrum. That leads to progressive decline in memory, thinking, and learning skills. Oxidative stress has been shown to play a significant role in the pathogenesis of Alzheimer's disease. Antioxidants are identified as part of therapeutic strategy to prevent or reduce the disease. Idebenone is a synthetic analogue of coenzyme Q10 with potent antioxidant properties, originally developed for the treatment of Alzheimer's disease and other cognitive disorders. After oral administration idebenone undergoes excessive first-pass metabolism and has a very low bioavailability of only about 1%. The use of an alternative route of administration such as the nasal and its incorporation into a novel carrier (nanocomposite microspheres) will eliminate the problems associated with reduced absorption, stability, and rapid biotransformation and will increase the opportunity for idebenone to realize its therapeutic potential in Alzheimer's disease. METHODS: Idebenone-loaded nanocomposite microspheres were obtained by spray drying. The structures were characterized using laser diffraction, scanning electron microscopy, high-performance liquid chromatography, Fourier-transform infrared spectroscopy, and differential scanning calorimetry. The ability of nanocomposite microspheres to bind human serum albumin was investigated by fluorescence spectroscopy. The mucoadhesive properties of the carrier were also determined. RESULTS: Bioadhesive nanocomposite microparticles with spherical shape, smooth surface, size of 7.37 ± 2.4 µm, and with high production yield, good drug entrapment efficiency, and loading values were obtained. Infrared spectra demonstrated no chemical interactions between idebenone and structure-forming polymers. The ability of particles to bind to human serum albumin depends on their drug loading. CONCLUSIONS: Nanocomposite microspheres were developed as the novel delivery system of idebenone for target nose-to-brain delivery. The obtained carrier may increase the therapeutic potential of idebenone by providing higher concentrations in brain tissue and reducing systemic exposure and side effects.


Asunto(s)
Administración Intranasal , Enfermedad de Alzheimer , Microesferas , Nanocompuestos , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/administración & dosificación , Ubiquinona/química , Ubiquinona/farmacocinética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Nanocompuestos/química , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Antioxidantes/química , Antioxidantes/farmacología , Portadores de Fármacos/química
2.
Talanta ; 269: 125445, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039676

RESUMEN

Cloud point extraction is an environmentally benign and simple separation/concentration procedure that can be regarded as an alternative to classical liquid-liquid extraction. In the current work, it was studied the compatibility of cloud point extraction followed by back-extraction in low volume of organic solvent with gas chromatography-mass spectrometry (GC-MS and GC-MS/MS). Triton X-100 was preferred than Triton X-114 as a surfactant to produce the clouding phenomenon and hexane or isooctane was found to be appropriate organic solvents which can be used at the back-extraction step. It was observed that ca. 0.09 % w/w Triton X-100 was co-extracted in the organic phase (hexane or isooctane) so further study was carried out to find out its effect on the GC-MS (GC-MS/MS) measurement when liquid samples are injected without any pre-cleaning to remove the surfactant. The chromatographic separation and the mass detection were not deteriorated by the concomitant Triton X-100 for analysis of several Organochlorine and Organophosphorus pesticides (alpha-HCH, beta-HCH, gamma-HCH, Pentachlorobenzene, Hexachlorobenzene, Chlorpyrifos, Chlorpyrifos-methyl, Aldrin, Endrin, Dieldrin, alpha-Endosulfan, Heptachlor, Heptachlor-endo-epoxide-A, o,p-DDD, p,p-DDD, o,p-DDE, p,p-DDE, o,p-DDT and p,p-DDT). The stability of the GC system when introducing surfactant was assessed as acceptable (typically the peak area RSD% for 20 consecutive injections were below 5 %). Under the developed vaporization conditions using PTV or PSS injectors it can be deduced that Triton X-100 is deposited on the inner surface of the liner. This effect is beneficial since the resulting surfactant layer makes a surface which facilitates the pesticides transfer to the GC column. As a consequence, for some analytes, a substantial enhancement (up to 2.3 times) in the sensitivity was observed when the matrix-matched medium (0.09 % w/w Triton X-100 in organic solvent) is used compared to calibration in solely hexane or isooctane. Meanwhile, the measurement precision in the presence of Triton X-100 remains unchanged. The GC-MS/MS analysis was alternatively accomplished by the use of glass or metal liner and it was found that the glass one should be preferable. Finally, it can be concluded that cloud point extraction with Triton X-100 can be combined with GC-MS or GC-MS/MS analysis by applying liquid injection of the target analytes transferred in organic solvents such as hexane or isooctane. We have established a positive effect of Triton X-100 on the instrumental performance which is on opposite to the generally accepted concern of the negative influence of the surfactants on the gas chromatographic analysis.

3.
Biomedicines ; 11(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37239161

RESUMEN

The present work is focused on the preparation of an optimal model of poly-ε-caprolactone nanoparticles as potential carriers for nasal administration of idebenone. A solvent/evaporation technique was used for nanoparticle preparation. Poly-ε-caprolactone with different molecular weights (14,000 and 80,000 g/mol) was used. Polysorbate 20 and Poloxamer 407, alone and in combination, were used as emulsifiers at different concentrations to obtain a stable formulation. The nanoparticles were characterized using dynamic light scattering, SEM, TEM, and FTIR. The resulting structures were spherical in shape and their size distribution depended on the type of emulsifier. The average particle size ranged from 188 to 628 nm. The effect of molecular weight and type of emulsifier was established. Optimal models of appropriate size for nasal administration were selected for inclusion of idebenone. Three models of idebenone-loaded nanoparticles were developed and the effect of molecular weight on the encapsulation efficiency was investigated. Increased encapsulation efficiency was found when poly-ε-caprolactone with lower molecular weight was used. The molecular weight also affected the drug release from the nanostructures. Dissolution study data were fitted into various kinetic models and the Korsmeyer-Peppas model was found to be indicative of the release mechanism of idebenone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...