Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 14(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786944

RESUMEN

The production of pure water plays a pivotal role in enabling sustainable green hydrogen production through electrolysis. The current industrial approach for generating pure water relies on energy-intensive techniques such as reverse osmosis. This study unveils a straightforward method to produce pure water, employing real-world units derived from previously simulated and developed laboratory devices. This demonstrated system is cost-effective and boasts low energy consumption, utilizing membrane distillation (MD) driven by the waste heat harnessed from photovoltaic (PV) panels. In a previous study, modeling simulations were conducted to optimize the multi-layered MD system, serving as a blueprint for the construction of prototype devices with a suitable selection of materials, enabling the construction of field-testable units. The most efficient PV-MD device, featuring evaporation and condensation zones constructed from steel sheets and polytetrafluoroethylene (PTFE) membranes, is capable of yielding high-purity water with conductivity levels below 145 µS with high flux rates.

2.
Membranes (Basel) ; 14(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38668113

RESUMEN

In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.

3.
Int J Biol Macromol ; 269(Pt 2): 131852, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679253

RESUMEN

Particulates and organic toxins, such as microplastics and dye molecules, are contaminants in industrial wastewater that must be purified due to environmental and sustainability concerns. Carboxylated cellulose acetate (CTA-COOH) nanofibrous membranes were fabricated using electrospinning followed by an innovative one-step surface hydrolysis/oxidation replacing the conventional two-step reactions. This approach offers a new pathway for the modification strategy of cellulose-based membranes. The CTA-COOH membrane was utilized for the removal of particulates and cationic dyes through filtration and adsorption, respectively. The filtration performance of the CTA-COOH nanofibrous membrane was carried out; high separation efficiency and low pressure drop were achieved, in addition to the high filtration selectivity against 0.6-µm and 0.8-µm nanoparticles. A cationic Bismarck Brown Y, was employed to challenge the adsorption capability of the CTA-COOH nanofibrous membrane, where the maximum adsorption capacity of the membrane for BBY was 158.73 mg/g. The self-standing CTA-COOH membrane could be used to conduct adsorption-desorption for 17 cycles with the regeneration rate as high as 97.0 %. The CTA-COOH nanofibrous membrane has excellent mechanical properties and was employed to manufacture a spiral wound adsorption cartridge, which exhibited remarkable separation efficiency in terms of treated water volume, which was 5.96 L, and retention rate, which was 100 %.

4.
Nanomaterials (Basel) ; 14(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38535655

RESUMEN

In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the corresponding crystallinity in the CSNFs decreases with the increasing amount of CSA used due to degradation of cellulose chains under harsh acidic conditions. The ammonium adsorption results from the CSNFs with varying degrees of sulfonation were analyzed using the Langmuir isotherm model, and the analysis showed a very high maximum ammonium adsorption capacity (41.1 mg/g) under neutral pH, comparable to the best value from a synthetic hydrogel in the literature. The high ammonium adsorption capacity of the CSNFs was found to be maintained in a broad acidic range (pH = 2.5 to 6.5).

5.
Phys Rev E ; 108(1-1): 014607, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583188

RESUMEN

We demonstrate a framework of interpreting data from x-ray photon correlation spectroscopy experiments with the aid of numerical simulations to describe nanoscale dynamics in soft matter. This is exemplified with the transport of passive tracer gold nanoparticles in networks of charge-stabilized cellulose nanofibers. The main structure of dynamic modes in reciprocal space could be replicated with a simulated system of confined Brownian motion, a digital twin, allowing for a direct measurement of important effective material properties describing the local environment of the tracers.

6.
Membranes (Basel) ; 13(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37505017

RESUMEN

To achieve high throughput, low-pressure drops, and high adsorption capacity of Cr(VI) and Pb(II) in industrial wastewater treatment, cellulose membranes containing cationic and anionic groups were fabricated, respectively. In this process, cost-effective cotton fabrics were oxidized using sodium periodate, followed by quaternary ammonium or sulfonation modifications. The chemical composition, surface morphology, and thermal and mechanical properties of the cellulose membranes were investigated by ATR-FTIR, solid-state NMR, SEM, TGA, and tensile experiments. Quaternary ammonium, aldehyde, and sulfonate groups were distributed on the cationic/anionic cellulose fibers as adsorption sites, which issue remarkable adsorption capability to the cellulose membranes. The highly toxic Cr(VI) and Pb(II) ions were used to challenge the adsorption capacity of the cationic and anionic cellulose membranes, respectively. The maximum adsorption capacities of Cr(VI) and Pb(II) ions were 61.7 and 63.7 mg/g, respectively, suggested by Langmuir isotherms, kinetics, and thermodynamics in the static experiments. The dynamic adsorption capability of cationic cellulose membranes against Cr(VI) ions was determined and compared with that of commercially available anionic-exchange membranes. Spiral wound filtration cartridges were fabricated by cationic and anionic cellulose membranes, respectively, and were used to adsorb Cr(VI) and Pb(II) from lab-made wastewater, respectively. The cationic cellulose cartridge can purify 4.4 L of wastewater containing 1.0 mg/L of Cr(VI) ions with a 100% removal ratio, while the pressure drop was retained at 246 Pa. Similarly, the anionic cellulose cartridge exhibited even more impressive adsorption capability; the removal ratio against Pb(II) was 99% when 8.6 L of 1.0 mg/L of Pb(II) ions containing wastewater was treated, and the pressure drop was retained at 234 Pa. A composite cartridge fabricated by the integration of cationic and anionic cellulose membranes was successfully employed to purify the wastewater containing Cr(VI) and Pb(II) simultaneously. The possible adsorption mechanism was proposed, and the recycling ability of the cellulose membranes was also discussed.

7.
ACS Appl Mater Interfaces ; 15(21): 26199-26214, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37192294

RESUMEN

A nanofibrous composite reverse osmosis (RO) membrane with a polyamide barrier layer containing interfacial water channels was fabricated on an electrospun nanofibrous substrate via an interfacial polymerization process. The RO membrane was employed for desalination of brackish water and exhibited enhanced permeation flux as well as rejection ratio. Nanocellulose was prepared by sequential oxidations of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sodium periodate systems and surface grafting with different alkyl groups including octyl, decanyl, dodecanyl, tetradecanyl, cetyl, and octadecanyl groups. The chemical structure of the modified nanocellulose was verified subsequently by Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), and solid NMR measurements. Two monomers, trimesoyl chloride (TMC) and m-phenylenediamine (MPD), were employed to prepare a cross-linked polyamide matrix, i.e., the barrier layer of the RO membrane, which integrated with the alkyl groups-grafted nanocellulose to build up interfacial water channels via interfacial polymerization. The top and cross-sectional morphologies of the composite barrier layer were observed by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) to verify the integration structure of the nanofibrous composite containing water channels. The aggregation and distribution of water molecules in the nanofibrous composite RO membrane verified the existence of water channels, demonstrated by molecular dynamics (MD) simulations. The desalination performance of the nanofibrous composite RO membrane was conducted and compared with that of commercially available RO membranes in the processing of brackish water, where 3 times higher permeation flux and 99.1% rejection ratio against NaCl were accomplished. This indicated that the engineering of interfacial water channels in the barrier layer could substantially increase the permeation flux of the nanofibrous composite membrane while retaining the high rejection ratio as well, i.e., to break through the trade-off between permeation flux and rejection ratio. Antifouling properties, chlorine resistance, and long-term desalination performance were also demonstrated to evaluate the potential applications of the nanofibrous composite RO membrane; remarkable durability and robustness were achieved in addition to 3 times higher permeation flux and a higher rejection ratio against commercial RO membranes in brackish water desalination.

8.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049257

RESUMEN

A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were analyzed using techniques such as BET analysis, SEM imaging, tensile testing, and rheology measurement. The optimal composition ratio was found to be 40% (SA) and 60% (DCNC) by weight. The performance of the SA-DCNC hydrogel bead for antibiotic remediation was evaluated using doxycycline (DOXY) and three other tetracyclines in both single- and multidrug systems, yielding a maximum adsorption capacity of 421.5 mg g-1 at pH 7 and 649.9 mg g-1 at pH 11 for DOXY. The adsorption mechanisms were investigated through adsorption studies focusing on the effects of contact time, pH, concentration, and competitive contaminants, along with X-ray photoelectron spectroscopy analysis of samples. The adsorption of DOXY was confirmed to be the synergetic effects of chemical reaction, electrostatic interaction, hydrogen bonding, and pore diffusion/surface deposition. The SA-DCNC composite hydrogel demonstrated high reusability, with more than 80% of its adsorption efficiency remaining after five cycles of the adsorption-desorption test. The SA-DCNC composite hydrogel bead could be a promising biomaterial for future antibiotic remediation applications in both pilot and industrial scales because of its high adsorption efficiency and ease of recycling.

9.
ACS Omega ; 8(9): 8634-8649, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910921

RESUMEN

In this study, anionic dialdehyde cellulose (DAC) and cationic dialdehyde cellulose (c-DAC) nanofibrous adsorbents were prepared via a two-step reaction from bamboo pulp, using sodium periodate and Girard's reagent T as oxidizing and cationizing agents, respectively. The performance of DAC and c-DAC for selective dye adsorption and separation was evaluated by six different organic dyes (with varying charge properties) and certain binary mixtures. Both adsorbents could remove the dyes but with different capability, where DAC exhibited high adsorption efficiency against cationic dyes (e.g., the maximum adsorption capacity for Bismarck brown Y was 552.1 mg/g) and c-DAC exhibited high adsorption efficiency against anionic dyes (e.g., the maximum adsorption capacity for Congo red was 540.3 mg/g). To investigate the adsorption mechanism for these adsorbents, effects of contact time, initial pH value, initial dye concentration, and ionic strength on the adsorption activity against Congo red were investigated. The adsorption equilibrium data of DAC were found to fit best with the Langmuir isotherm model, whereas that of c-DAC were found to fit best with the Freundlich model. Both DAC and c-DAC adsorption kinetic data could be described by the pseudo-second-order kinetic model, and these adsorbents possessed stable adsorption efficiency in the pH range of 4-10. Furthermore, their dye adsorption capabilities were found to increase with increasing ionic strength (salt concentration). The distinctive complementary features of DAC and c-DAC will allow them to remove a wide range of organic dyes from industrial wastewater.

10.
Membranes (Basel) ; 13(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36837650

RESUMEN

Ultrafiltration (UF) is a common technique used in wastewater treatments. However, the issue of membrane fouling in UF can greatly hinder the effectiveness of the treatments. This study demonstrated a low-fouling composite cellulose membrane system based on microfibrillated cellulose (MFC) and silica nanoparticle additives. The incorporation of 'non-spherical' silica nanoparticles was found to exhibit better structural integration in the membrane (i.e., minimal aggregation of silica nanoparticles in the membrane scaffold) as compared to spherical silica. The resulting composite membranes were tested for UF using local wastewater, where the best-performing membrane exhibited higher permeation flux than commercial polyvinylidene difluoride (PVDF) and polyether sulfone (PES) membranes while maintaining a high separation efficiency (~99.6%) and good flux recovery ratio (>90%). The analysis of the fouling behavior using different models suggested that the processes of cake layer formation and pore-constriction were probably two dominant fouling mechanisms, likely due to the presence of humic substances in wastewater. The demonstrated cellulose composite membrane system showed low-fouling and high restoration capability by a simple hydraulic cleaning method due to the super hydrophilic nature of the cellulose scaffold containing silica nanoparticles.

11.
Mater Horiz ; 10(3): 808-828, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36597872

RESUMEN

Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.


Asunto(s)
Neuronas , Polímeros , Polímeros/química , Reproducibilidad de los Resultados , Neuronas/fisiología , Encéfalo/fisiología , Electrodos Implantados
12.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499574

RESUMEN

Carboxycellulose nanofibers (CNFs) promise to be a sustainable and inexpensive alternative material for polymer electrolyte membranes compared to the expensive commercial Nafion membrane. However, its practical applications have been limited by its relatively low performance and reduced mechanical properties under typical operating conditions. In this study, carboxycellulose nanofibers were derived from wood pulp by TEMPO oxidation of the hydroxyl group present on the C6 position of the cellulose chain. Then, citric acid cross-linked CNF membranes were prepared by a solvent casting method to enhance performance. Results from FT-IR spectroscopy, 13C NMR spectroscopy, and XRD reveal a chemical cross-link between the citric acid and CNF, and the optimal fuel cell performance was obtained by cross-linking 70 mL of 0.20 wt % CNF suspension with 300 µL of 1.0 M citric acid solution. The membrane electrode assemblies (MEAs), operated in an oxygen atmosphere, exhibited the maximum power density of 27.7 mW cm-2 and the maximum current density of 111.8 mA cm-2 at 80 °C and 100% relative humidity (RH) for the citric acid cross-linked CNF membrane with 0.1 mg cm-2 Pt loading on the anode and cathode, which is approximately 30 times and 22 times better, respectively, than the uncross-linked CNF film. A minimum activation energy of 0.27 eV is achieved with the best-performing citric acid cross-linked CNF membrane, and a proton conductivity of 9.4 mS cm-1 is obtained at 80 °C. The surface morphology of carboxycellulose nanofibers and corresponding membranes were characterized by FIB/SEM, SEM/EDX, TEM, and AFM techniques. The effect of citric acid on the mechanical properties of the membrane was assessed by tensile strength DMA.


Asunto(s)
Nanofibras , Espectroscopía Infrarroja por Transformada de Fourier , Nanofibras/química , Celulosa/química , Resistencia a la Tracción , Ácido Cítrico
13.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500779

RESUMEN

Thallium(I) (Tl(I)) pollution has become a pressing environmental issue due to its harmful effect on human health and aquatic life. Effective technology to remove Tl(I) ions from drinking water can offer immediate societal benefits especially in the developing countries. In this study, a bio-adsorbent system based on nitro-oxidized nanocellulose (NOCNF) extracted from sorghum stalks was shown to be a highly effective Tl(I) removal medium. The nitro-oxidation process (NOP) is an energy-efficient, zero-waste approach that can extract nanocellulose from any lignocellulosic feedstock, where the effluent can be neutralized directly into a fertilizer without the need for post-treatment. The demonstrated NOCNF adsorbent exhibited high Tl(I) removal efficiency (>90% at concentration < 500 ppm) and high maximum removal capacity (Qm = 1898 mg/g using the Langmuir model). The Tl(I) adsorption mechanism by NOCNF was investigated by thorough characterization of NOCNF-Tl floc samples using spectroscopic (FTIR), diffraction (WAXD), microscopic (SEM, TEM, and AFM) and zeta-potential techniques. The results indicate that adsorption occurs mainly due to electrostatic attraction between cationic Tl(I) ions and anionic carboxylate groups on NOCNF, where the adsorbed Tl(I) sites become nuclei for the growth of thallium oxide nanocrystals at high Tl(I) concentrations. The mineralization process enhances the Tl(I) removal efficiency, and the mechanism is consistent with the isotherm data analysis using the Freundlich model.

14.
Nat Commun ; 13(1): 7789, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526631

RESUMEN

Photomedicine has gained great attention due to its nontoxicity, good selectivity and small trauma. However, owing to the limited penetration of light and difficult monitoring of the photo-media therapies, it is challenging to apply photomedical treatment in deep tissue as they may damage normal tissues. Herein, a thermal regulated interventional photomedicine based on a temperature-adaptive hydrogel fiber-based optical waveguide (THFOW) is proposed, capable of eliminating deeply seated tumor cells while lowering risks of overtemperature (causes the death of healthy cells around the tumor). The THFOW is fabricated by an integrated homogeneous-dynamic-crosslinking-spinning method, and shows a remarkable soft tissue-affinity (low cytotoxicity, swelling stability, and soft tissue-like Young's modulus). Moreover, the THFOW shows an excellent light propagation property with different wavenumbers (especially -0.32 dB cm-1 with 915 nm laser light), and temperature-gated light propagation effect. The THFOW and relevant therapeutic strategy offer a promising application for intelligent photomedicine in deep issue.


Asunto(s)
Hidrogeles , Sistema Musculoesquelético , Temperatura , Módulo de Elasticidad
15.
Membranes (Basel) ; 12(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363636

RESUMEN

This study revealed the effects of incorporating ionic liquid (IL) molecules: 1-ethyl, 1-butyl, and 1-octyl-3-methyl-imidazolium chlorides with different alkyl chain lengths, in interfacial polymerization (IP) on the structure and property (i.e., permeate-flux and salt rejection ratio) relationships of resulting RO membranes. The IL additive was added in the aqueous meta-phenylene diamine (MPD; 0.1% w/v) phase, which was subsequently reacted with trimesoyl chloride (TMC; 0.004% w/v) in the hexane phase to produce polyamide (PA) barrier layer. The structure of resulting free-standing PA thin films was characterized by grazing incidence wide-angle X-rays scattering (GIWAXS), which results were correlated with the performance of thin-film composite RO membranes having PA barrier layers prepared under the same IP conditions. Additionally, the membrane surface properties were characterized by zeta potential and water contact angle measurements. It was found that the membrane prepared by the longer chain IL molecule generally showed lower salt rejection ratio and higher permeation flux, possibly due to the inclusion of IL molecules in the PA scaffold. This hypothesis was supported by the GIWAXS results, where a self-assembled surfactant-like structure formed by IL with the longest aliphatic chain length was detected.

17.
ACS Appl Mater Interfaces ; 14(13): 15391-15400, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35333505

RESUMEN

A key challenge to the creation of chemically responsive electro-functionality of nonconductive, hydrophobic, and free-contacted textile or fibrous network materials is how to impart the 3D structure with functional filaments to enable responsive structure sensitivity, which is critical in establishing the fibrous platform technology for sensor applications. We demonstrate this capability using an electrospun polymeric fibrous substrate embedded with nano-filaments defined by size-tunable gold nanoparticles and structurally sensitive dendrons as crosslinkers. The resulting interparticle properties strongly depend on the assembly of the nano-filaments, enabling an interface with high structure sensitivity to molecular interactions. This is demonstrated with chemiresistive responses to vaporous alcohol molecules with different chain lengths and isomers, which is critical in breath and sweat sensing involving a high-moisture or -humidity background. The sensitivity scales with the chain length and varies with their isomers. This approach harnesses the multifunctional tunability of the nano-filaments in a sensor array format, showing high structure sensitivity to the alcohol molecules with different chain lengths and isomers. The high structure sensitivity and its implications for a paradigm shift in the design of textile sensor arrays for multiplexing human performance monitoring via breath or sweat sensing and environmental monitoring of air quality are also discussed.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Humanos , Humedad , Nanopartículas del Metal/química , Sudor , Textiles
18.
Chem Rev ; 122(9): 8936-9031, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35330990

RESUMEN

Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.


Asunto(s)
Nanopartículas , Nanoestructuras , Purificación del Agua , Adsorción , Materiales Biocompatibles , Nanopartículas/química , Nanoestructuras/química
19.
Membranes (Basel) ; 11(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832097

RESUMEN

In this study, granulated activated charcoal (GAC) and bio charcoal (BC) is used as a filler in P3 biosand bag filter to study their filtration performance against a range of fluoride impurities from 1-1400 mg/L. A set of experiments are done to analyze the filtration efficiency of the sandbag filter against fluoride impurities after incorporating different amounts (e.g., 0.2, 2 kg) and a combination of GAC and BC. A combination of filler GAC and BC (1 kg each) have exhibited excellent results with 100% fluoride removal efficiency against 5 mg/L fluoride impurities for an entire experimental time of 165 min. It is because of the synergetic effect of adsorption caused by the high surface area (739 m2/g) of GAC and hydroxyapatite groups in BC. The data from remediation experiments using individual GAC and BC are fitted into the Langmuir and Freundlich Isotherm Models to check their adsorption mechanism and determine GAC and BC's maximum adsorption capacity (Qm). The remediation data for both GAC and BC have shown the better fitting to the Langmuir Isotherm Model with a high R2 value of 0.994 and 0.970, respectively, showing the excellent conformity with monolayer adsorption. While the GAC and BC have presented negative Kf values of -1.08 and -0.72, respectively, for Freundlich Model, showing the non-conformity to multilayer adsorption. The Qm values obtained from Langmuir Model for GAC is 6.23 mg/g, and for BC, it is 9.13 mg/g. The pH study on adsorption efficiency of individual GAC and BC against 5 mg/L of fluoride impurities indicates the decrease in removal efficiency with an increase in pH from 3 to 9. For example, BC has shown removal efficiency of 99.8% at pH 3 and 99.5% at pH 9, while GAC has exhibited removal efficiency of 96.1% at pH 3 and 95.9% at pH 9. Importantly, this study presents the significance of the synergetic application of GAC and BC in the filters, where GAC and BC are different in their origin, functionalities, and surface characteristics.

20.
Soft Matter ; 17(48): 10829-10838, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34796898

RESUMEN

Lamellar crystal-dominated (LCD) surfaces hold great superiority and broad prospects in polymer surface engineering. The key to this is avoiding the formation of an amorphous phase in the interlamellar region. Here we give a first report of achieving LCD surfaces of polyethylene films via melt stretching-induced free surface crystallization. We demonstrate that the resultant surface is constructed directly by orientated and edge-on lamellae within a surface depth of tens to hundreds of nanometers, while the normally existing amorphous phase is avoided. The crystallization-driven formation of the LCD surface has been ascribed to the heterogeneous chain dynamics of a melt free surface, that is, high chain mobility, low viscosity and loose chain entanglement, which facilitates the complete chain disentanglement during crystallization. In addition, we confirm that the surface morphology is controllable with respect to lamellar orientation, spacing and depth by changing the melt stretching strain or quenching the deformed melt. Meanwhile, owing to a possible kinetics competition between crystallization and chain disentanglement, the structural spacing of surface lamellae holds a positive correlation with the lamellar depth. Since free surface effects are immanent in polymer materials, the currently proposed melt processing strategy is demonstrated to be transferable to other semicrystalline polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA