Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Am Chem Soc ; 138(16): 5222-5, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27075956

RESUMEN

In the absence of adequate oxygen, cancer cells that are grown in hypoxic solid tumors resist treatment using antitumor drugs (such as doxorubicin, DOX), owing to their attenuated intracellular production of reactive oxygen species (ROS). Hyperbaric oxygen (HBO) therapy favorably improves oxygen transport to the hypoxic tumor tissues, thereby increasing the sensitivity of tumor cells to DOX. However, the use of HBO with DOX potentiates the ROS-mediated cytotoxicity of the drug toward normal tissues. In this work, we hypothesize that regional oxygen treatment by an implanted oxygen-generating depot may enhance the cytotoxicity of DOX against malignant tissues in a highly site-specific manner, without raising systemic oxygen levels. Upon implantation close to the tumor, the oxygen-generating depot reacts with the interstitial medium to produce oxygen in situ, effectively shrinking the hypoxic regions in the tumor tissues. Increasing the local availability of oxygen causes the cytotoxicity of DOX that is accumulated in the tumors to be significantly enhanced by the elevated production of ROS, ultimately allaying the hypoxia-induced DOX resistance in solid malignancies. Importantly, this enhancement of cytotoxicity is limited to the site of the tumors, and this feature of the system that is proposed herein is unique.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Implantes de Medicamentos/farmacología , Oxigenoterapia Hiperbárica/métodos , Hipoxia Tumoral/efectos de los fármacos , Animales , Antígenos de Neoplasias/metabolismo , Cloruro de Calcio/química , Anhidrasa Carbónica IX/metabolismo , Catalasa/química , Catalasa/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacocinética , Implantes de Medicamentos/química , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ratones Desnudos , Oxígeno , Peróxidos/química , Tomografía de Emisión de Positrones , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Biomaterials ; 56: 26-35, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25934276

RESUMEN

Repeated cancer treatments are common, owing to the aggressive and resistant nature of tumors. This work presents a chitosan (CS) derivative that contains self-doped polyaniline (PANI) side chains, capable of self-assembling to form micelles and then transforming into hydrogels driven by a local change in pH. Analysis results of small-angle X-ray scattering indicate that the sol-gel transition of this CS derivative may provide the mechanical integrity to maintain its spatial stability in the microenvironment of solid tumors. The micelles formed in the CS hydrogel function as nanoscaled heating sources upon exposure to near-infrared light, thereby enabling the selective killing of cancer cells in a light-treated area. Additionally, photothermal efficacy of the micellar hydrogel is evaluated using a tumor-bearing mouse model; hollow gold nanospheres (HGNs) are used for comparison. Given the ability of the micellar hydrogel to provide spatial stability within a solid tumor, which prevents its leakage from the injection site, the therapeutic efficacy of this hydrogel, as a photothermal therapeutic agent for repeated treatments, exceeds that of nanosized HGNs. Results of this study demonstrate that this in situ-formed micellar hydrogel is a highly promising modality for repeated cancer treatments, providing a clinically viable, minimally invasive phototherapeutic option for therapeutic treatment.


Asunto(s)
Quitosano/química , Hidrogeles/química , Rayos Infrarrojos , Micelas , Neoplasias/terapia , Fototerapia/métodos , Animales , Línea Celular Tumoral , Quitosano/análogos & derivados , Humanos , Concentración de Iones de Hidrógeno , Luz , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Nanosferas/química , Trasplante de Neoplasias , Transición de Fase , Fenilendiaminas/química , Polímeros/química , Dispersión de Radiación , Espectrofotometría Ultravioleta , Viscosidad
5.
Small ; 10(20): 4100-5, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24976002

RESUMEN

Treating inflammation with a dual-switch-controlled release system: The release of a drug from the developed microbead system occurs only in response to both an increase in local temperature and an acidic environmental pH. This dual-switch-controlled release system has the advantages of distinguishing between inflamed and healthy tissues to improve treatment efficacy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Microesferas , Microscopía Confocal , Microscopía Electrónica de Rastreo
6.
J Control Release ; 193: 304-15, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-24780267

RESUMEN

As a cationic polysaccharide, chitosan (CS) has been identified for its potential use as a non-viral vector for exogenous gene transfection. However, owing to their electrostatic interactions, CS complexes may cause difficulties in gene release upon their arrival at the site of action, thus limiting their transfection efficiency. In this work, an attempt is made to facilitate the release of a gene by incorporating a negatively-charged poly(γ-glutamic acid) (γPGA) into CS complexes in order to diminish their attractive interactions. The mechanisms of exploiting γPGA to enhance the transfection efficiency of CS complexes are elucidated. The feasibility of using this CS/γPGA-based system for DNA or siRNA transfer is explored as well. Additionally, potential of the CS/γPGA formulation to deliver disulfide bond-conjugated dual PEGylated siRNAs for multiple gene silencing is also examined. Moreover, the genetic use of pKillerRed-mem, delivered using complexes of CS and γPGA, to express a membrane-targeted KillerRed as an intrinsically generated photosensitizer for photodynamic therapy is described.


Asunto(s)
Quitosano/química , ADN/administración & dosificación , Portadores de Fármacos/química , Endocitosis , Técnicas de Transferencia de Gen , Ácido Poliglutámico/análogos & derivados , ARN Interferente Pequeño/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/genética , Quitosano/farmacología , ADN/genética , ADN/farmacocinética , Portadores de Fármacos/farmacología , Estabilidad de Medicamentos , Endocitosis/efectos de los fármacos , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Luciferasas/genética , Simulación de Dinámica Molecular , Ácido Poliglutámico/química , Ácido Poliglutámico/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacocinética , Transfección
7.
Adv Healthc Mater ; 3(11): 1854-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24789379

RESUMEN

In the conventional treatment of osteomyelitis, the penetration of antibiotics into the infected bone is commonly poor. To ensure that the local antibiotic concentration is adequate, this work develops an injectable calcium phosphate (CP) cement in which is embedded pH-responsive hollow microspheres (HMs) that can control the release of a drug according to the local pH. The HMs are fabricated using a microfluidic device, with a shell of poly(D,L-lactic-co-glycolic acid) (PLGA) and an aqueous core that contains vancomycin (Van) and NaHCO3. At neutral pH, the CP/HM cement elutes a negligible concentration of the drug. In an acidic environment, the NaHCO3 that is encapsulated in the HMs reacts with the acid rapidly to generate CO2 bubbles, disrupting the PLGA shells and thereby releasing Van locally in excess of a therapeutic threshold. The feasibility of using this CP/HM cement to treat osteomyelitis is studied using a rabbit model. Analytical results reveal that the CP/HM cement provides highly effective local antibacterial activity. Histological examination further verifies the efficacy of the treatment by the CP/HM cement. The above findings suggest that the CP/HM cement is a highly efficient system for the local delivery of antibiotics in the treatment of osteomyelitis.


Asunto(s)
Cementos para Huesos/química , Cementos para Huesos/farmacología , Dióxido de Carbono/química , Gases/química , Inflamación/tratamiento farmacológico , Osteomielitis/tratamiento farmacológico , Animales , Antibacterianos/química , Antibacterianos/farmacología , Fosfatos de Calcio/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Conejos , Vancomicina/administración & dosificación , Vancomicina/química
8.
Adv Healthc Mater ; 3(8): 1133-48, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24470263

RESUMEN

Cell transplantation via direct intramuscular injection is a promising therapy for patients with ischemic diseases. However, following injections, retention of transplanted cells in engrafted areas remains problematic, and can be deleterious to cell-transplantation therapy. In this Progress Report, a thermoresponsive hydrogel system composed of aqueous methylcellulose (MC) blended with phosphate-buffered saline is constructed to grow cell sheet fragments and cell bodies for the treatment of ischemic diseases. The as-prepared MC hydrogel system undergoes a sol-gel reversible transition upon heating or cooling at ≈32 °C. Via this unique property, the grown cell sheet fragments (cell bodies) can be harvested without using proteolytic enzymes; consequently, their inherent extracellular matrices (ECMs) and integrative adhesive agents remain well preserved. In animal studies using rats and pigs with experimentally created myocardial infarction, the injected cell sheet fragments (cell bodies) become entrapped in the interstices of muscular tissues and adhere to engraftment sites, while a minimal number of cells exist in the group receiving dissociated cells. Moreover, transplantation of cell sheet fragments (cell bodies) significantly increases vascular density, thereby improving the function of an infarcted heart. These experimental results demonstrate that cell sheet fragments (cell bodies) function as a cell-delivery construct by providing a favorable ECM environment to retain transplanted cells locally and consequently, improving the efficacy of therapeutic cell transplantation.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Metilcelulosa/química , Infarto del Miocardio/terapia , Animales , Cardiomioplastia , Hipoxia de la Célula , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/trasplante , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Ratones , Neovascularización Fisiológica , Ratas , Trasplante de Células Madre , Células Madre/citología , Células Madre/metabolismo , Porcinos , Temperatura
9.
Biomaterials ; 34(28): 6930-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23769418

RESUMEN

Many human diseases carry at least two independent gene mutations, further exacerbating clinical disorders. In this work, disulfide bond-conjugated dual PEGylated siRNAs were synthesized, capable of specifically targeting and silencing two genes simultaneously. To achieve efficient delivery, the conjugated siRNAs were formulated with the cationic chitosan together with an anionic polymer, poly(γ-glutamic acid) (γPGA), to form a ternary complex. Experimental results indicate that the incorporated γPGA could significantly enhance their intracellular delivery efficiency, allowing for reduction of the disulfide bond-conjugated PEGylated siRNAs delivered to the PEGylated siRNAs in the reductive cytoplasmic environment. The PEGylated siRNAs could more significantly increase their enzymatic tolerability, effectively silence multiple genes, and prolong the duration of their gene silencing capability than the unmodified siRNAs could. Silencing of different genes simultaneously significantly contributes to the efforts to treat multiple gene disorders, and prolonged duration of gene silencing can reduce the need for frequent administrations.


Asunto(s)
Quitosano/química , Polietilenglicoles/química , Ácido Poliglutámico/análogos & derivados , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Silenciador del Gen , Técnicas de Transferencia de Gen , Humanos , Simulación de Dinámica Molecular , Ácido Poliglutámico/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
10.
Biomaterials ; 34(4): 1063-72, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23164424

RESUMEN

Myocardial infarction is often associated with abnormalities in electrical function due to a massive loss of functioning cardiomyocytes. This work develops a mesh, consisting of aligned composite nanofibers of polyaniline (PANI) and poly(lactic-co-glycolic acid) (PLGA), as an electrically active scaffold for coordinating the beatings of the cultured cardiomyocytes synchronously. Following doping by HCl, the electrospun fibers could be transformed into a conductive form carrying positive charges, which could then attract negatively charged adhesive proteins (i.e. fibronectin and laminin) and enhance cell adhesion. During incubation, the adhered cardiomyocytes became associated with each other and formed isolated cell clusters; the cells within each cluster elongated and aligned their morphology along the major axis of the fibrous mesh. After culture, expression of the gap-junction protein connexin 43 was clearly observed intercellularly in isolated clusters. All of the cardiomyocytes within each cluster beat synchronously, implying that the coupling between the cells was fully developed. Additionally, the beating rates among these isolated cell clusters could be synchronized via an electrical stimulation designed to imitate that generated in a native heart. Importantly, improving the impaired heart function depends on electrical coupling between the engrafted cells and the host myocardium to ensure their synchronized beating.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Comunicación Celular/fisiología , Miocitos Cardíacos/fisiología , Nanoestructuras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido , Compuestos de Anilina/química , Animales , Animales Recién Nacidos , Materiales Biocompatibles/química , Células Cultivadas , Conductividad Eléctrica , Ácido Láctico/química , Ensayo de Materiales , Conformación Molecular , Miocitos Cardíacos/citología , Nanoestructuras/ultraestructura , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Endogámicas Lew
11.
Adv Drug Deliv Rev ; 65(6): 865-79, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23159541

RESUMEN

Chitosan (CS), a cationic polysaccharide, is widely regarded as a safe and efficient intestinal absorption enhancer of therapeutic macromolecules, owing to its inherent mucoadhesive feature and ability to modulate the integrity of epithelial tight junctions reversibly. By using CS-based nanoparticles, many studies have attempted to protect the loaded macromolecules against acidic denaturation and enzymatic degradation, prolong their intestinal residence time, and increase their absorption by the intestinal epithelium. Derivatives of CS such as quaternized CS, thiolated CS and carboxylated CS have also been examined to further enhance its effectiveness in oral absorption of macromolecular drugs. This review article describes the synthesis of these CS derivatives and their characteristics, as well as their potential transport mechanisms of macromolecular therapeutics across the intestinal biological membrane. Recent advances in using CS and its derivatives as carriers for oral delivery of hydrophilic macromolecules and their effects on drug transport are also reviewed.


Asunto(s)
Quitosano/química , Sustancias Macromoleculares/administración & dosificación , Sustancias Macromoleculares/farmacocinética , Nanopartículas/química , Adyuvantes Farmacéuticos/química , Adyuvantes Farmacéuticos/farmacocinética , Administración Oral , Disponibilidad Biológica , Transporte Biológico/fisiología , Química Farmacéutica , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Tracto Gastrointestinal/metabolismo , Humanos , Absorción Intestinal/fisiología , Polímeros/química , Polímeros/farmacocinética , Proteínas/administración & dosificación , Proteínas/farmacocinética , Receptores de Superficie Celular/metabolismo
12.
Tissue Eng Part C Methods ; 17(6): 651-61, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21375393

RESUMEN

Engineering three-dimensional (3D) cell-dense tissues with a well-organized structure remains a challenge in tissue engineering. In this study, highly oriented fibrous bundles, consisted of composite fibers of poly(L-lactide-co-glycolide)/superparamagnetic iron oxide nanoparticles, were fabricated using an electrospinning technique. The magnetic properties of the fabricated fibrous bundles were examined by a vibrating sample magnetometer and a superconducting quantum interference device; the results demonstrate that the fabricated fibrous bundles revealed superparamagnetic behavior without magnetic hysteresis. After seeding C2C12 myoblasts on the fibrous bundles, cells were grown along the direction of the underlying fibers (cell rods), an aligned pattern similar to those in native skeletal muscle tissues. When treated with the differentiation medium, myoblasts were fused together and formed multinucleated myotubes. As soon as applying an external magnetic field, the cell rods can spontaneously response to the magnetic control and self-assemble into 3D tissues with a highly ordered architecture. These findings demonstrate that the magnetically susceptible fibrous bundles not only can serve as a functional unit providing the topographic cue for cell orientation, but also can be magnetically manipulated for the creation of 3D cell-dense constructs. This technique may be applied to various cell types and scaffold configurations, thus advancing the design of engineered tissues that more closely replicate native tissues.


Asunto(s)
Mioblastos/citología , Mioblastos/fisiología , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular/efectos de la radiación , Línea Celular , Movimiento Celular/fisiología , Electroquímica/métodos , Campos Electromagnéticos , Ratones , Mioblastos/efectos de la radiación , Dosis de Radiación , Rotación
13.
Biomaterials ; 31(33): 8780-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20800274

RESUMEN

Although advantageous for siRNA packing and protection, chitosan (CS)-based complexes may lead to difficulties in siRNA release once they arrive at the site of action, due to their electrostatic interactions. To assist the intracellular release of siRNA and thus enhance its effectiveness in gene silencing, we incorporated a negatively charged poly(γ-glutamic acid) (γ-PGA) into CS/siRNA complexes. The inclusion of γ-PGA did not alter the complex-formation ability between CS and siRNA; additionally, their cellular uptake was significantly enhanced. The results obtained in our molecular dynamic simulations indicate that the binding between CS and siRNA remained stable in the cytosol environment. In contrast, the compact structure of the ternary CS/siRNA/γ-PGA complexes was unpacked; such a structural unpackage may facilitate the intracellular release of siRNA. In the gene silencing study, we found that the inclusion of γ-PGA into complexes could significantly expedite the onset of gene knockdown, enhance their inhibition efficiency and prolong the duration of gene silencing. These findings may be attributed to the fact that there were significantly more CS/siRNA/γ-PGA complexes internalized into the cells in company with their more rapid intracellular unpackage and release of siRNA when compared with their binary counterparts in the absence of γ-PGA. The aforementioned results suggest that CS/siRNA/γ-PGA complexes can be an efficient vector for siRNA transfection.


Asunto(s)
Quitosano/metabolismo , Silenciador del Gen , Ácido Poliglutámico/análogos & derivados , ARN Interferente Pequeño/metabolismo , Línea Celular Tumoral , Quitosano/química , Citosol/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Espacio Intracelular/metabolismo , Luciferasas/genética , Microscopía Confocal , Simulación de Dinámica Molecular , Ácido Poliglutámico/química
14.
Biomaterials ; 31(8): 2425-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20034662

RESUMEN

Skin is a highly immune-reactive tissue containing abundant antigen-presenting cells such as Langerhans cells (LCs), and thus is a favorable site for DNA immunization. This study developed a multifunctional core-shell nanoparticle system, which can be delivered transdermally into the epidermis via a gene gun, for use as a DNA carrier. The developed nanoparticles comprised a hydrophobic PLGA core and a positively-charged glycol chitosan (GC) shell. The core of the nanoparticles was used to load fluorescent quantum dots (QDs) for ultrasensitive detection of Langerhans cell migration following transdermal delivery, while a reporter gene was electrostatically adsorbed onto the GC shell layer of the nanoparticles. Results of fluorescence spectrophotometry, transmission electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction measurement confirmed that the prepared nanoparticles had a core-shell structure with QDs in their core area. The surface charge of nanoparticles depended strongly on pH environment, enabling the intracellular release of the loaded DNA via a pH-mediated mechanism. Using a mouse model, this study demonstrated that bombardment of nanoparticles transfected DNA directly into LCs present in the epidermis; the transfected LCs then migrated and expressed the encoded gene products in the skin draining lymph nodes. These observation results suggest that the developed nanoparticle system is suitable for monitoring and fine-tuning important functional aspects of the immune system, in conjunction with the loaded fluorescence, and thus has potential for use in immunotherapy and vaccine development.


Asunto(s)
Administración Cutánea , ADN , Portadores de Fármacos/química , Células Epidérmicas , Células de Langerhans/metabolismo , Nanopartículas/química , Polímeros/química , Animales , Células Cultivadas , ADN/administración & dosificación , ADN/metabolismo , Epidermis/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/química , Células de Langerhans/citología , Ensayo de Materiales , Ratones , Tamaño de la Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Puntos Cuánticos , Transfección/métodos , Vacunas de ADN
15.
Biomaterials ; 30(28): 4877-88, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19527916

RESUMEN

In-situ forming hydrogels triggered by environmental stimuli have emerged as a promising injectable strategy targeted for various biomedical applications. However, several drawbacks associated with temperature-stimulated hydrogels have been reported. Employing a hydrophobically-modified chitosan (N-palmitoyl chitosan, NPCS), we developed a pH-triggered hydrogel system which showed a rapid nanostructure transformation within a narrow pH range (pH 6.5-7.0). NPCS in an aqueous environment was found to be a shear-thinning fluid and exhibited an instant recovery of its elastic properties after shear thinning, thereby making it an injectable material. Additionally, aqueous NPCS, an associating polyelectrolyte, can be rapidly transformed into hydrogel triggered simply by its environmental pH through a proper balance between charge repulsion and hydrophobic interaction. This in-situ hydrogel system was shown to be nontoxic. Subcutaneous injection of aqueous NPCS (pH 6.5) into a rat model resulted in rapid formation of a massive hydrogel at the location of injection. The implanted hydrogel was found to be degradable and was associated with an initial macrophage response which decreased with time as the degradation proceeded. These results suggested that the developed NPCS hydrogel may be used as an injectable drug/cell delivery system.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Quitosano/análogos & derivados , Hidrogeles/química , Hidrogeles/toxicidad , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Quitosano/toxicidad , Módulo de Elasticidad , Concentración de Iones de Hidrógeno , Inyecciones Subcutáneas , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratas , Ratas Wistar , Dispersión del Ángulo Pequeño , Viscosidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...