Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(4): 1550-1569, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665642

RESUMEN

Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(µ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.

2.
Biomaterials ; 272: 120765, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33780686

RESUMEN

Ischemic stroke, and the consequent brain cell death, is a common cause of death and disability worldwide. Current treatments that primarily aim to relieve symptoms are relatively inefficient in achieving brain tissue regeneration and functional recovery, and thus novel therapeutic options are urgently needed. Although cell-based therapies have shown promise for treating the infarcted brain, a recurring challenge is the inadequate retention and engraftment of transplanted cells at the target tissue, thereby limiting the ultimate therapeutic efficacy. Here, we show that transplantation of preassembled three-dimensional (3D) spheroids of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs) results in significantly improved cell retention and survival compared with conventional mixed-cell suspensions. The transplanted 3D spheroids exhibit notable neuroprotective, proneurogenic, proangiogenic and anti-scarring potential as evidenced by clear extracellular matrix structure formation and paracrine factor expression and secretion; this ultimately results in increased structural and motor function recovery in the brain of an ischemic stroke mouse model. Therefore, transplantation of MSCs and ECs using the 3D cell spheroid configuration not only reduces cell loss during cell harvesting/administration but also enhances the resultant therapeutic benefit, thus providing important proof-of-concept for future clinical translation.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Trasplante de Células Madre Mesenquimatosas , Accidente Cerebrovascular , Animales , Isquemia Encefálica/terapia , Células Endoteliales , Ratones , Esferoides Celulares , Accidente Cerebrovascular/terapia
3.
Front Cell Dev Biol ; 8: 327, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457907

RESUMEN

Conventional biomedical research is mostly performed by utilizing a two-dimensional monolayer culture, which fails to recapitulate the three-dimensional (3D) organization and microenvironment of native tissues. To overcome this limitation, several methods are developed to fabricate microtissues with the desired 3D microenvironment. However, they tend to be time-consuming, labor-intensive, or costly, thus hindering the application of 3D microtissues as models in a wide variety of research fields. In the present study, we have developed a pressure-assisted network for droplet accumulation (PANDA) system, an easy-to-use chip that comprises a multichannel fluidic system and a hanging drop cell culture module for uniform 3D microtissue formation. This system can control the desired artificial niches for modulating the fate of the stem cells to form the different sizes of microtissue by adjusting the seeding density. Furthermore, a large number of highly consistent 3D glomerulus-like heterogeneous microtissues that are composed of kidney glomerular podocytes and mesenchymal stem cells have been formed successfully. These data suggest that the developed PANDA system can be employed as a rapid and economical platform to fabricate microtissues with tunable 3D microenvironment and cellular heterogeneity, thus can be employed as tissue-mimicking models in various biomedical research.

4.
Adv Biosyst ; 4(3): e1900254, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32293147

RESUMEN

Islet transplantation has been demonstrated to be a promising therapy for type 1 diabetes mellitus. Although it is a minimally invasive operating procedure and provides easy access for graft monitoring, subcutaneous transplantation of the islet only has limited therapeutic outcomes, owing to the poor capacity of skin tissue to foster revascularization in a short period. Herein, 3D cell spheroids of clinically accessible umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells are formed and employed for codelivery with ß cells subcutaneously. The 3D stem cell spheroids, which can secrete multiple proangiogenic and prosurvival growth factors, induce robust angiogenesis and prevent ß cell graft death, as indicated by the results of in vivo bioluminescent tracking and histological analysis. These experimental data highlight the efficacy of the 3D stem cell spheroids that are fabricated using translationally applicable cell types in promoting the survival and function of subcutaneously transplanted ß cells.


Asunto(s)
Supervivencia Celular/fisiología , Células Secretoras de Insulina , Neovascularización Fisiológica/fisiología , Esferoides Celulares , Animales , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Células Secretoras de Insulina/fisiología , Células Secretoras de Insulina/trasplante , Células Madre Mesenquimatosas/citología , Ratones , Ratones Desnudos , Esferoides Celulares/citología , Esferoides Celulares/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...