Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 54(12): 1919-1932, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471071

RESUMEN

It remains unclear why acute depletion of CTCF (CCCTC-binding factor) and cohesin only marginally affects expression of most genes despite substantially perturbing three-dimensional (3D) genome folding at the level of domains and structural loops. To address this conundrum, we used high-resolution Micro-C and nascent transcript profiling in mouse embryonic stem cells. We find that enhancer-promoter (E-P) interactions are largely insensitive to acute (3-h) depletion of CTCF, cohesin or WAPL. YY1 has been proposed as a structural regulator of E-P loops, but acute YY1 depletion also had minimal effects on E-P loops, transcription and 3D genome folding. Strikingly, live-cell, single-molecule imaging revealed that cohesin depletion reduced transcription factor (TF) binding to chromatin. Thus, although CTCF, cohesin, WAPL or YY1 is not required for the short-term maintenance of most E-P interactions and gene expression, our results suggest that cohesin may facilitate TFs to search for and bind their targets more efficiently.


Asunto(s)
Proteínas , Animales , Ratones , Factor de Unión a CCCTC/genética , Cohesinas
2.
Methods Mol Biol ; 2532: 51-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867245

RESUMEN

3D genome mapping aims at connecting the physics of chromatin folding to the underlying biological events, and applications of various chromosomal conformation capture (3C) assays continue to discover critical roles of genome folding in regulating nuclear functions. To interrogate the full spectrum of chromatin folding ranging from the level of nucleosomes to full chromosomes in mammals, we developed an enhanced 3C-based method called Micro-C. The protocol employs Micrococcal nuclease (MNase) to fragment the genome, which overcomes the resolution limit of restriction enzyme-based methods, enabling the estimation of contact frequencies between proximal nucleosomes. Such improvements successfully resolve the fine-scale level of chromatin folding, including enhancer-promoter or promoter-promoter interactions, genic and nucleosomal folding, and boost the signal-to-noise ratio in detecting loops and substructures underlying TADs. In this chapter, we will thoroughly discuss the details of the Micro-C protocol and critical parameters to consider for generating high-quality Micro-C maps.


Asunto(s)
Genoma , Nucleosomas , Animales , Cromatina/genética , Mapeo Cromosómico/métodos , Mamíferos/genética , Nucleasa Microcócica , Nucleosomas/genética
3.
Science ; 376(6592): 496-501, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35420890

RESUMEN

Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF and loop-extruding cohesins, but the live dynamics of loop formation and stability remain unknown. Here, we directly visualized chromatin looping at the Fbn2 TAD in mouse embryonic stem cells using super-resolution live-cell imaging and quantified looping dynamics by Bayesian inference. Unexpectedly, the Fbn2 loop was both rare and dynamic, with a looped fraction of approximately 3 to 6.5% and a median loop lifetime of approximately 10 to 30 minutes. Our results establish that the Fbn2 TAD is highly dynamic, and about 92% of the time, cohesin-extruded loops exist within the TAD without bridging both CTCF boundaries. This suggests that single CTCF boundaries, rather than the fully CTCF-CTCF looped state, may be the primary regulators of functional interactions.


Asunto(s)
Cromatina , Proteínas Cromosómicas no Histona , Animales , Teorema de Bayes , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ratones , Cohesinas
4.
Nat Genet ; 54(4): 481-491, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35410381

RESUMEN

Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromosomas/genética , Cromosomas/metabolismo , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Elife ; 92020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170773

RESUMEN

The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.


Asunto(s)
Proteínas de Ciclo Celular/química , Cromatina/química , Proteínas Cromosómicas no Histona/química , Animales , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , ADN/metabolismo , Mamíferos/genética , Mitosis , Fase S , Saccharomyces cerevisiae/genética , Cohesinas
6.
Nat Methods ; 17(4): 430-436, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203384

RESUMEN

To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.


Asunto(s)
ADN/metabolismo , Genómica/métodos , Hibridación Fluorescente in Situ/métodos , Microscopía/métodos , Pintura Cromosómica , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Procesamiento de Imagen Asistido por Computador , Análisis de Secuencia de ADN/métodos
7.
Mol Cell ; 78(3): 539-553.e8, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32213323

RESUMEN

Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Transcripción Genética , Animales , Factor de Unión a CCCTC/genética , Cromatina/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Componentes Genómicos , Ratones , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Mol Cell ; 78(3): 554-565.e7, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32213324

RESUMEN

Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.


Asunto(s)
Cromosomas Humanos/ultraestructura , Animales , Factor de Unión a CCCTC/metabolismo , Células Cultivadas , Cromatina/química , Cromosomas de los Mamíferos/ultraestructura , Células Madre Embrionarias/citología , Fibroblastos/citología , Humanos , Masculino , Mamíferos/genética , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Relación Señal-Ruido
9.
Mol Cell ; 76(3): 395-411.e13, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31522987

RESUMEN

Mammalian genomes are folded into topologically associating domains (TADs), consisting of chromatin loops anchored by CTCF and cohesin. Some loops are cell-type specific. Here we asked whether CTCF loops are established by a universal or locus-specific mechanism. Investigating the molecular determinants of CTCF clustering, we found that CTCF self-association in vitro is RNase sensitive and that an internal RNA-binding region (RBRi) mediates CTCF clustering and RNA interaction in vivo. Strikingly, deleting the RBRi impairs about half of all chromatin loops in mESCs and causes deregulation of gene expression. Disrupted loop formation correlates with diminished clustering and chromatin binding of RBRi mutant CTCF, which in turn results in a failure to halt cohesin-mediated extrusion. Thus, CTCF loops fall into at least two classes: RBRi-independent and RBRi-dependent loops. We speculate that evidence for RBRi-dependent loops may provide a molecular mechanism for establishing cell-specific CTCF loops, potentially regulated by RNA(s) or other RBRi-interacting partners.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/genética , Línea Celular , Cromatina/química , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
10.
Mol Cell Biol ; 39(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30718362

RESUMEN

The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.


Asunto(s)
Cromatina/metabolismo , Cromatina/ultraestructura , ARN de Transferencia/genética , Sitios de Unión , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Ensamble y Desensamble de Cromatina , Cromosomas/genética , Cromosomas/metabolismo , Heterocromatina/metabolismo , Heterocromatina/ultraestructura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción TFIII/metabolismo
11.
Nat Methods ; 13(12): 1009-1011, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27723753

RESUMEN

We present Micro-C XL, an improved method for analysis of chromosome folding at mononucleosome resolution. Using long crosslinkers and isolation of insoluble chromatin, Micro-C XL increases signal-to-noise ratio. Micro-C XL maps of budding and fission yeast genomes capture both short-range chromosome fiber features such as chromosomally interacting domains and higher order features such as centromere clustering. Micro-C XL provides a single assay to interrogate chromosome folding at length scales from the nucleosome to the full genome.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas Fúngicos/química , Nucleosomas/química , Saccharomyces cerevisiae/química , Schizosaccharomyces/química , Centrómero/química , Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Relación Señal-Ruido
12.
Cell Rep ; 13(8): 1610-22, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26586442

RESUMEN

The histone variant H2A.Z is a hallmark of nucleosomes flanking promoters of protein-coding genes and is often found in nucleosomes that carry lysine 56-acetylated histone H3 (H3-K56Ac), a mark that promotes replication-independent nucleosome turnover. Here, we find that H3-K56Ac promotes RNA polymerase II occupancy at many protein-coding and noncoding loci, yet neither H3-K56Ac nor H2A.Z has a significant impact on steady-state mRNA levels in yeast. Instead, broad effects of H3-K56Ac or H2A.Z on RNA levels are revealed only in the absence of the nuclear RNA exosome. H2A.Z is also necessary for the expression of divergent, promoter-proximal noncoding RNAs (ncRNAs) in mouse embryonic stem cells. Finally, we show that H2A.Z functions with H3-K56Ac to facilitate formation of chromosome interaction domains (CIDs). Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA expression, perhaps in part by regulating higher-order chromatin structures.


Asunto(s)
Cromatina/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Homeostasis/genética , Transcripción Genética/genética , Acetilación , Animales , Células Cultivadas , Cromosomas/genética , Replicación del ADN/genética , Células Madre Embrionarias/metabolismo , Histonas/genética , Ratones , Nucleosomas/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/genética , ARN Mensajero/genética , ARN no Traducido/genética
13.
Cell ; 162(1): 108-19, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26119342

RESUMEN

We describe a Hi-C-based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, "gene looping" factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction.


Asunto(s)
Bioquímica/métodos , Cromosomas Fúngicos/química , Nucleosomas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
14.
Mol Cell ; 58(2): 371-86, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25801168

RESUMEN

Covalent histone modifications are highly conserved and play multiple roles in eukaryotic transcription regulation. Here, we mapped 26 histone modifications genome-wide in exponentially growing yeast and during a dramatic transcriptional reprogramming-the response to diamide stress. We extend prior studies showing that steady-state histone modification patterns reflect genomic processes, especially transcription, and display limited combinatorial complexity. Interestingly, during the stress response we document a modest increase in the combinatorial complexity of histone modification space, resulting from roughly 3% of all nucleosomes transiently populating rare histone modification states. Most of these rare histone states result from differences in the kinetics of histone modification that transiently uncouple highly correlated marks, with slow histone methylation changes often lagging behind the more rapid acetylation changes. Explicit analysis of modification dynamics uncovers ordered sequences of events in gene activation and repression. Together, our results provide a comprehensive view of chromatin dynamics during a massive transcriptional upheaval.


Asunto(s)
Cromatina/genética , Diamida/farmacología , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Histonas/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...