RESUMEN
Does the human brain represent perspectival shapes, i.e., viewpoint-dependent object shapes, especially in relatively higher-level visual areas such as the lateral occipital cortex? What is the temporal profile of the appearance and disappearance of neural representations of perspectival shapes? And how does attention influence these neural representations? To answer these questions, we employed functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and multivariate decoding techniques to investigate spatiotemporal neural representations of perspectival shapes. Participants viewed rotated objects along with the corresponding objective shapes and perspectival shapes (i.e., rotated round, round, and oval) while we measured their brain activities. Our results revealed that shape classifiers trained on the basic shapes (i.e., round and oval) consistently identified neural representations in the lateral occipital cortex corresponding to the perspectival shapes of the viewed objects regardless of attentional manipulations. Additionally, this classification tendency toward the perspectival shapes emerged approximately 200 ms after stimulus presentation. Moreover, attention influenced the spatial dimension as the regions showing the perspectival shape classification tendency propagated from the occipital lobe to the temporal lobe. As for the temporal dimension, attention led to a more robust and enduring classification tendency towards perspectival shapes. In summary, our study outlines a spatiotemporal neural profile for perspectival shapes that suggests a greater degree of perspectival representation than is often acknowledged.
Asunto(s)
Atención , Mapeo Encefálico , Imagen por Resonancia Magnética , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Atención/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Mapeo Encefálico/métodos , Estimulación Luminosa/métodos , Lóbulo Occipital/fisiología , Lóbulo Occipital/diagnóstico por imagen , Reconocimiento Visual de Modelos/fisiología , Percepción de Forma/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagenRESUMEN
Previous research has demonstrated that 40-Hz audiovisual stimulation can improve pathological conditions and promote cognitive function in mouse models of Alzheimer's disease. However, limited research has been conducted on humans, and the results have been inconsistent. In our study, we divided participants into an experimental group and a control group to investigate whether 40-Hz stimulation could enhance performance in visual threshold tasks and working memory task. In Experiment 1, we used a light bulb as the stimulus source and found a general practice effect, but no difference between the groups. In Experiment 2, we used a computer screen as the stimulus source and set the stimulation frequency to 48 Hz. In Experiment 3 , we used a computer screen and audio as stimulus sources, simultaneously applying a 40-Hz stimulation to both visual and auditory modalities. Both experiments only revealed the disappearance of practice effects in the 40-Hz (48-Hz) group. Experiment 4 focused on testing visual spatial memory, but did not identify any significant differences between or within groups. In Experiment 5, we tested various visual spatial frequencies; yet again, no significant differences were found. Based on the comprehensive results, we conclude that a 40-Hz stimulation does not have a promoting effect on visual threshold or visual spatial memory.