Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L618-L626, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469627

RESUMEN

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.


Asunto(s)
Asma , Citocinas , Estrés del Retículo Endoplásmico , Células Epiteliales , Linfopoyetina del Estroma Tímico , Receptor Toll-Like 3 , Respuesta de Proteína Desplegada , Humanos , Citocinas/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Asma/metabolismo , Asma/patología , Asma/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Transducción de Señal , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Bronquios/metabolismo , Bronquios/patología , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Células Cultivadas , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L385-L398, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463835

RESUMEN

Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpregnancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion, and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early infection, as was mRNA expression of the antiviral ß-defensins, Bd1, Bd2, and Spd and IFNs, Ifnα, Ifnß, and Ifnλ. During late infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutrophil infiltration and mRNA expression of the antiviral markers Ifnß, Ifnλ, and Ifnγ and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underlying inflammatory asthmatic phenotype and reduces antiviral responses.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic airway disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Targeting specific ß-defensins or microRNAs (miRNAs) may prove useful in future treatments for IAV infection during pregnancy.


Asunto(s)
Asma , Virus de la Influenza A , Gripe Humana , Trastornos Respiratorios , Hipersensibilidad Respiratoria , beta-Defensinas , Embarazo , Femenino , Ratones , Animales , Humanos , Citocinas/metabolismo , Hiperplasia/patología , Asma/patología , Pulmón/metabolismo , Hipersensibilidad Respiratoria/patología , Gripe Humana/patología , Antivirales/uso terapéutico , ARN Mensajero , Pyroglyphidae , Modelos Animales de Enfermedad
3.
Sci Transl Med ; 13(621): eaav7223, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34818056

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death worldwide. Inhalation of cigarette smoke (CS) is the major cause in developed countries. Current therapies have limited efficacy in controlling disease or halting its progression. Aberrant expression of microRNAs (miRNAs) is associated with lung disease, including COPD. We performed miRNA microarray analyses of the lungs of mice with CS-induced experimental COPD. miR-21 was the second highest up-regulated miRNA, particularly in airway epithelium and lung macrophages. Its expression in human lung tissue correlated with reduced lung function in COPD. Prophylactic and therapeutic treatment with a specific miR-21 inhibitor (Ant-21) inhibited CS-induced lung miR-21 expression in mice; suppressed airway macrophages, neutrophils, and lymphocytes; and improved lung function, as evidenced by decreased lung hysteresis, transpulmonary resistance, and tissue damping in mouse models of COPD. In silico analyses identified a potential miR-21/special AT-rich sequence­binding protein 1 (SATB1)/S100 calcium binding protein A9 (S100A9)/nuclear factor κB (NF-κB) axis, which was further investigated. CS exposure reduced lung SATB1 in a mouse model of COPD, whereas Ant-21 treatment restored SATB1 and reduced S100A9 expression and NF-κB activity. The beneficial effects of Ant-21 in mice were reversed by treatment with SATB1-targeting small interfering RNA. We have identified a pathogenic role for a miR-21/SATB1/S100A9/NF-κB axis in COPD and defined miR-21 as a therapeutic target for this disease.


Asunto(s)
Calgranulina B , Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Animales , Calgranulina B/genética , Calgranulina B/metabolismo , Pulmón/patología , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
4.
Clin Transl Immunology ; 10(2): e1247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614031

RESUMEN

Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome-induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress- and inflammasome-related inflammatory disorders.

5.
Respirology ; 26(5): 442-451, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33455043

RESUMEN

BACKGROUND AND OBJECTIVE: COVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD. METHODS: We obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC. RESULTS: Increased gene expression of ACE2 was associated with older age (P = 0.03) and male sex (P = 0.03), but not with pack-years smoked. When we compared gene expression between adults with asthma, COPD and healthy controls, mean ACE2 expression was lower in asthma patients (P = 0.01). Gene expression of furin, a protease that facilitates viral endocytosis, was also lower in patients with asthma (P = 0.02), while ADAM-17, a disintegrin that cleaves ACE2 from the surface, was increased (P = 0.02). ACE2 protein expression was also reduced in endobronchial biopsies from asthma patients. CONCLUSION: Increased ACE2 expression occurs in older people and males. Asthma patients have reduced expression. Altered ACE2 expression in the lower airway may be an important factor in virus tropism and may in part explain susceptibility factors and why asthma patients are not over-represented in those with COVID-19 complications.


Asunto(s)
Asma/genética , COVID-19/genética , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Asma/epidemiología , Asma/metabolismo , Australia/epidemiología , COVID-19/epidemiología , COVID-19/metabolismo , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Peptidil-Dipeptidasa A/biosíntesis
7.
Trends Biochem Sci ; 45(12): 1007-1008, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33082068

RESUMEN

Integral membrane proteins (IMPs) have crucial roles in many cellular processes. A novel intramembrane chaperone complex, recently elucidated by Chitwood and Hedge, provides mechanistic insight of IMP biogenesis and folding, illustrating how IMPs with multiple transmembrane domains (TMDs) are assembled within the endoplasmic reticulum (ER) membrane.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Dominios Proteicos , Pliegue de Proteína
8.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L926-L931, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32903043

RESUMEN

The recurrent emergence of novel, pathogenic coronaviruses (CoVs) severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1; 2002), Middle East respiratory syndrome (MERS)-CoV (2012), and most recently SARS-CoV-2 (2019) has highlighted the need for physiologically informative airway epithelial cell infection models for studying immunity to CoVs and development of antiviral therapies. To address this, we developed an in vitro infection model for two human coronaviruses; alphacoronavirus 229E-CoV (229E) and betacoronavirus OC43-CoV (OC43) in differentiated primary human bronchial epithelial cells (pBECs). Primary BECs from healthy subjects were grown at air-liquid interface (ALI) and infected with 229E or OC43, and replication kinetics and time-course expression of innate immune mediators were assessed. OC43 and 229E-CoVs replicated in differentiated pBECs but displayed distinct replication kinetics: 229E replicated rapidly with viral load peaking at 24 h postinfection, while OC43 replication was slower peaking at 96 h after infection. This was associated with diverse antiviral response profiles defined by increased expression of type I/III interferons and interferon-stimulated genes (ISGs) by 229E compared with no innate immune activation with OC43 infection. Understanding the host-virus interaction for previously established coronaviruses will give insight into pathogenic mechanisms underpinning SARS-CoV-2-induced respiratory disease and other future coronaviruses that may arise from zoonotic sources.


Asunto(s)
Antivirales/farmacología , Bronquios/inmunología , Coronavirus Humano 229E/inmunología , Infecciones por Coronavirus/inmunología , Células Epiteliales/inmunología , Replicación Viral/efectos de los fármacos , Bronquios/efectos de los fármacos , Bronquios/virología , Células Cultivadas , Coronavirus Humano 229E/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Humanos , Interferones/metabolismo , Interferón lambda
9.
JCI Insight ; 52019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31343988

RESUMEN

Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-ß binding protein-1 (LTBP1) to induce TGF-ß activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-ß-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Fibrosis Pulmonar Idiopática/patología , Proteínas de Unión a TGF-beta Latente/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adulto , Animales , Bleomicina/toxicidad , Proteínas de Unión al Calcio/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/cirugía , Pulmón/citología , Pulmón/patología , Trasplante de Pulmón , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Cultivo Primario de Células , Isoformas de Proteínas/metabolismo , Adulto Joven
10.
Immunol Cell Biol ; 97(9): 840-852, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31335993

RESUMEN

The innate immune system is our first line of defense against viral pathogens. Host cell pattern recognition receptors sense viral components and initiate immune signaling cascades that result in the production of an array of cytokines to combat infection. Retinoic acid-inducible gene-I (RIG-I) is a pattern recognition receptor that recognizes viral RNA and, when activated, results in the production of type I and III interferons (IFNs) and the upregulation of IFN-stimulated genes. Ubiquitination of RIG-I by the E3 ligases tripartite motif-containing 25 (TRIM25) and Riplet is thought to be requisite for RIG-I activation; however, recent studies have questioned the relative importance of these two enzymes for RIG-I signaling. In this study, we show that deletion of Trim25 does not affect the IFN response to either influenza A virus (IAV), influenza B virus, Sendai virus or several RIG-I agonists. This is in contrast to deletion of either Rig-i or Riplet, which completely abrogated RIG-I-dependent IFN responses. This was consistent in both mouse and human cell lines, as well as in normal human bronchial cells. With most of the current TRIM25 literature based on exogenous expression, these findings provide critical evidence that Riplet, and not TRIM25, is required endogenously for the ubiquitination of RIG-I. Despite this, loss of TRIM25 results in greater susceptibility to IAV infection in vivo, suggesting that it may have an alternative role in host antiviral defense. This study refines our understanding of RIG-I signaling in viral infections and will inform future studies in the field.


Asunto(s)
Antivirales/metabolismo , Proteína 58 DEAD Box/metabolismo , Proteínas de Unión al ADN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Animales , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/virología , Eliminación de Gen , Humanos , Ligandos , Ratones Endogámicos C57BL , ARN/metabolismo , Receptores Inmunológicos
11.
Elife ; 82019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31246170

RESUMEN

Although respiratory syncytial virus (RSV) is responsible for more human deaths each year than influenza, its pathogenic mechanisms are poorly understood. Here high-resolution quantitative imaging, bioenergetics measurements and mitochondrial membrane potential- and redox-sensitive dyes are used to define RSV's impact on host mitochondria for the first time, delineating RSV-induced microtubule/dynein-dependent mitochondrial perinuclear clustering, and translocation towards the microtubule-organizing centre. These changes are concomitant with impaired mitochondrial respiration, loss of mitochondrial membrane potential and increased production of mitochondrial reactive oxygen species (ROS). Strikingly, agents that target microtubule integrity the dynein motor protein, or inhibit mitochondrial ROS production strongly suppresses RSV virus production, including in a mouse model with concomitantly reduced virus-induced lung inflammation. The results establish RSV's unique ability to co-opt host cell mitochondria to facilitate viral infection, revealing the RSV-mitochondrial interface for the first time as a viable target for therapeutic intervention.


Asunto(s)
Interacciones Huésped-Patógeno , Mitocondrias/patología , Virus Sincitiales Respiratorios/crecimiento & desarrollo , Replicación Viral , Células A549 , Animales , Modelos Animales de Enfermedad , Dineínas/metabolismo , Humanos , Pulmón/patología , Pulmón/virología , Ratones , Microtúbulos/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología
12.
Front Immunol ; 9: 175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472925

RESUMEN

Asthma is a heterogeneous, chronic inflammatory disease of the airways. It is a complex disease with different clinical phenotypes and results in a substantial socioeconomic burden globally. Poor understanding of pathogenic mechanisms of the disease hinders the investigation into novel therapeutics. Emerging evidence of the unfolded protein response (UPR) in the endoplasmic reticulum (ER) has demonstrated previously unknown functions of this response in asthma development. A worsening of asthmatic condition can be brought on by stimuli such as oxidative stress, pathogenic infections, and allergen exposure. All of which can induce ER stress and activate UPR leading to activation of different inflammatory responses and dysregulate the innate immune functions in the airways. The UPR as a central regulator of asthma pathogenesis may explain several unknown mechanism of the disease onset, which leads us in new directions for future asthma treatments. In this review, we summarize and discuss the causes and impact of ER-UPR in driving the pathogenesis of asthma and highlight its importance in clinical implications.


Asunto(s)
Asma/patología , Estrés del Retículo Endoplásmico , Inmunidad Innata , Respuesta de Proteína Desplegada , Animales , Ensayos Clínicos como Asunto , Citocinas , Modelos Animales de Enfermedad , Retículo Endoplásmico/patología , Humanos , Inflamación , Ratones , Transducción de Señal
13.
J Pathol ; 243(4): 510-523, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28862768

RESUMEN

Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Hiperreactividad Bronquial/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Inflamación/metabolismo , Pulmón/metabolismo , Actinas/metabolismo , Animales , Asma/inmunología , Asma/fisiopatología , Asma/prevención & control , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Hiperreactividad Bronquial/prevención & control , Broncoconstricción , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Femenino , Genotipo , Humanos , Inflamación/inmunología , Inflamación/fisiopatología , Inflamación/prevención & control , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/fisiopatología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Interferencia de ARN , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Tiempo , Transfección
14.
PLoS One ; 12(9): e0184260, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28863172

RESUMEN

INTRODUCTION: The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. MATERIALS AND METHODS: Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. RESULTS: HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. CONCLUSIONS: Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.


Asunto(s)
Células Epiteliales/metabolismo , Regulación Enzimológica de la Expresión Génica , Ácido Úrico/metabolismo , Xantina Deshidrogenasa/metabolismo , Adulto , Anciano , Alérgenos , Animales , Asma/metabolismo , Bronquios/citología , Bronquios/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Interferón gamma/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pyroglyphidae , Humo , Fumar , Productos de Tabaco , Factor de Necrosis Tumoral alfa/farmacología
15.
JCI Insight ; 2(7): e90443, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28405612

RESUMEN

Influenza A virus (IAV) infections lead to severe inflammation in the airways. Patients with chronic obstructive pulmonary disease (COPD) characteristically have exaggerated airway inflammation and are more susceptible to infections with severe symptoms and increased mortality. The mechanisms that control inflammation during IAV infection and the mechanisms of immune dysregulation in COPD are unclear. We found that IAV infections lead to increased inflammatory and antiviral responses in primary bronchial epithelial cells (pBECs) from healthy nonsmoking and smoking subjects. In pBECs from COPD patients, infections resulted in exaggerated inflammatory but deficient antiviral responses. A20 is an important negative regulator of NF-κB-mediated inflammatory but not antiviral responses, and A20 expression was reduced in COPD. IAV infection increased the expression of miR-125a or -b, which directly reduced the expression of A20 and mitochondrial antiviral signaling (MAVS), and caused exaggerated inflammation and impaired antiviral responses. These events were replicated in vivo in a mouse model of experimental COPD. Thus, miR-125a or -b and A20 may be targeted therapeutically to inhibit excessive inflammatory responses and enhance antiviral immunity in IAV infections and in COPD.


Asunto(s)
Gripe Humana/inmunología , MicroARNs/genética , Mitocondrias/inmunología , Proteínas/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Anciano , Animales , Estudios de Casos y Controles , Células Cultivadas , Células Epiteliales/inmunología , Femenino , Humanos , Inflamación/etiología , Virus de la Influenza A/fisiología , Gripe Humana/complicaciones , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Fumar/efectos adversos , Replicación Viral
16.
Elife ; 62017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28195529

RESUMEN

Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.


Asunto(s)
Citocinas/metabolismo , Receptores ErbB/antagonistas & inhibidores , Virus de la Influenza A/inmunología , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Peso Corporal , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Proteínas Supresoras de la Señalización de Citocinas/deficiencia , Carga Viral
17.
Am J Respir Crit Care Med ; 195(1): 43-56, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27409149

RESUMEN

RATIONALE: Aberrant expression of microRNAs (miRNAs) can have a detrimental role in disease pathogenesis. OBJECTIVES: To identify dysregulated miRNAs in lung tissue of patients with chronic obstructive pulmonary disease (COPD). METHODS: We performed miRNA and mRNA profiling using high throughput stem-loop reverse-transcriptase quantitative polymerase chain reaction and mRNA microarray, respectively, on lung tissue of 30 patients (screening cohort) encompassing 8 never-smokers, 10 smokers without airflow limitation, and 12 smokers with COPD. Differential expression of miRNA-218-5p (miR-218-5p) was validated by reverse-transcriptase quantitative polymerase chain reaction in an independent cohort of 71 patients, an in vivo murine model of COPD, and primary human bronchial epithelial cells. Localization of miR-218-5p was assessed by in situ hybridization. In vitro and in vivo perturbation of miR-218-5p combined with RNA sequencing and gene set enrichment analysis was used to elucidate its functional role in COPD pathogenesis. MEASUREMENTS AND MAIN RESULTS: Several miRNAs were differentially expressed among the different patient groups. Interestingly, miR-218-5p was significantly down-regulated in smokers without airflow limitation and in patients with COPD compared with never-smokers. Decreased pulmonary expression of miR-218-5p was validated in an independent validation cohort, in cigarette smoke-exposed mice, and in human bronchial epithelial cells. Importantly, expression of miR-218-5p strongly correlated with airway obstruction. Furthermore, cellular localization of miR-218-5p in human and murine lung revealed highest expression of miR-218-5p in the bronchial airway epithelium. Perturbation experiments with a miR-218-5p mimic or inhibitor demonstrated a protective role of miR-218-5p in cigarette smoke-induced inflammation and COPD. CONCLUSIONS: We highlight a role for miR-218-5p in the pathogenesis of COPD.


Asunto(s)
MicroARNs/fisiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Adulto , Anciano , Animales , Bronquios/metabolismo , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Humanos , Pulmón/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Respir Res ; 17(1): 119, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27658857

RESUMEN

Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.

19.
JCI Insight ; 1(9)2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27398409

RESUMEN

Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke-induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-α, IL-33, and CXCL1) in experimental COPD. Fbln1c-/- mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.

20.
Am J Respir Cell Mol Biol ; 55(1): 117-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26807508

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a serious lung disease that progressively worsens lung function. Those affected are highly susceptible to influenza virus infections that result in exacerbations with exaggerated symptoms with increased mortality. The mechanisms underpinning this increased susceptibility to infection in COPD are unclear. In this study, we show that primary bronchial epithelial cells (pBECs) from subjects with COPD have impaired induction of type I IFN (IFN-ß) and lead to heightened viral replication after influenza viral infection. COPD pBECs have reduced protein levels of protein kinase (PK) R and decreased formation of PKR-mediated antiviral stress granules, which are critical in initiating type I IFN inductions. In addition, reduced protein expression of p300 resulted in decreased activation of IFN regulatory factor 3 and subsequent formation of IFN-ß enhanceosome in COPD pBECs. The decreased p300 induction was the result of enhanced levels of microRNA (miR)-132. Ectopic expression of PKR or miR-132 antagomiR alone failed to restore IFN-ß induction, whereas cotreatment increased antiviral stress granule formation, induction of p300, and IFN-ß in COPD pBECs. This study reveals that decreased induction of both PKR and p300 proteins contribute to impaired induction of IFN-ß in COPD pBECs upon influenza infection.


Asunto(s)
Antivirales/metabolismo , Gránulos Citoplasmáticos/metabolismo , Epitelio/patología , Gripe Humana/complicaciones , Gripe Humana/virología , Interferón beta/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/virología , Bronquios/patología , Susceptibilidad a Enfermedades , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Gripe Humana/inmunología , Gripe Humana/patología , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Fosforilación , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología , Estrés Fisiológico , Replicación Viral , eIF-2 Quinasa/metabolismo , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA