Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 1048735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578577

RESUMEN

The recent discovery of comammox Nitrospira, a complete ammonia oxidizer, capable of completing the nitrification on their own has presented tremendous challenges to our understanding of the nitrification process. There are two divergent clades of comammox Nitrospira, Clade A and B. However, their population abundance, community structure and role in ammonia and nitrite oxidation are poorly understood. We conducted a 94-day microcosm study using a grazed dairy pasture soil amended with urea fertilizers, synthetic cow urine, and the nitrification inhibitor, dicyandiamide (DCD), to investigate the growth and community structure of comammox Nitrospira spp. We discovered that comammox Nitrospira Clade B was two orders of magnitude more abundant than Clade A in this fertile dairy pasture soil and the most abundant subcluster was a distinctive phylogenetic uncultured subcluster Clade B2. We found that comammox Nitrospira Clade B might not play a major role in nitrite oxidation compared to the role of canonical Nitrospira nitrite-oxidizers, however, comammox Nitrospira Clade B is active in nitrification and the growth of comammox Nitrospira Clade B was inhibited by a high ammonium concentration (700 kg synthetic urine-N ha-1) and the nitrification inhibitor DCD. We concluded that comammox Nitrospira Clade B: (1) was the most abundant comammox in the dairy pasture soil; (2) had a low tolerance to ammonium and can be inhibited by DCD; and (3) was not the dominant nitrite-oxidizer in the soil. This is the first study discovering a new subcluster of comammox Nitrospira Clade B2 from an agricultural soil.

2.
Can J Microbiol ; 61(12): 885-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26435508

RESUMEN

Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads.


Asunto(s)
Calcio/metabolismo , Gluconatos/metabolismo , Nicotiana/metabolismo , Ácido Fítico/metabolismo , Pseudomonas/metabolismo , 6-Fitasa/genética , Disponibilidad Biológica , Fósforo/metabolismo , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Microbiología del Suelo , Nicotiana/crecimiento & desarrollo , Nicotiana/microbiología
3.
Environ Microbiol Rep ; 7(6): 918-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26256849

RESUMEN

The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185.


Asunto(s)
Burkholderia/genética , Burkholderia/metabolismo , Gluconatos/metabolismo , Fosfatos/metabolismo , Deshidrogenasas de Carbohidratos , Regulación Bacteriana de la Expresión Génica , Orden Génico , Hidroximetilbilano Sintasa/genética , Redes y Vías Metabólicas , Modelos Biológicos , Mutación , Operón , Fosfatos/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA