Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404019, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981048

RESUMEN

Triboelectric nanogenerators (TENGs) have become reliable green energy harvesters by converting biomechanical motions into electricity. However, the inevitable charge leakage and poor electric field (EF) of conventional TENG result in inferior tribo-charge density on the active layer. In this paper, TiO2-MXene incorporated polystyrene (PS) nanofiber membrane (PTMx NFM) charge trapping interlayer is introduced into single electrode mode TENG (S-TENG) to prevent electron loss at the electrode interface. Surprisingly, this charge-trapping mechanism augments the surface charge density and electric output performance of TENGs. Polyvinylidene difluoride (PVDF) mixed polyurethane (PU) NFM is used as tribo-active layer, which improves the crystallinity and mechanical property of PVDF to prevent delamination during long cycle tests. Herein, the effect of this double-layer capacitive model is explained experimentally and theoretically. With optimization of the PTMx interlayer thickness, S-TENG exhibits a maximum open-circuit voltage of (280 V), short-circuit current of (20 µA) transfer charge of (120 nC), and power density of (25.2 µW cm-2). Then, this energy is utilized to charge electrical appliances. In addition, the influence of AC/DC EF simulation in wound healing management (vitro L929 cell migration, vivo tissue regeneration) is also investigated by changing the polarity of trans-epithelial potential (TEP) distribution in the wounded area.

2.
Mater Horiz ; 11(6): 1395-1413, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38282534

RESUMEN

Electronic devices with multiple features bring in comfort to the way we live. However, repeated use causes physical as well as chemical degradation reducing their lifetime. The self-healing ability is the most crucial property of natural systems for survival in unexpected situations and variable environments. However, this self-repair property is not possessed by the conventional electronic devices designed today. To expand their lifetime and make them reliable by restoring their mechanical, functional, and electrical properties, self-healing materials are a great go-to option to create robust devices. In this review the intriguing self-healing polymers and fascinating mechanism of self-healable energy harvesting devices such as triboelectric nanogenerators (TENG) and storage devices like supercapacitors and batteries from the aspect of electrodes and electrolytes in the past five years are reviewed. The current challenges, strategies, and perspectives for a smart and sustainable future are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...