Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4458, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796508

RESUMEN

The impact of interbasin linkage on the weather/climate and ecosystems is significantly broader and profounder than that of only appearing in an individual basin. Here, we reveal that a decadal linkage of sea surface temperature (SST) has emerged between western Australian coast and western-central tropical Pacific since 1985, associated with continuous intensification of decadal variabilities (8-16 years). The rapid SST changes in both tropical Indian Ocean and Indo-Pacific warm pool in association to greenhouse gases and volcanoes are emerging factors resulting in enhanced decadal co-variabilities between these two regions since 1985. These SST changes induce enhanced convection variability over the Maritime Continent, leading to stronger easterlies in the western-central tropical Pacific during the warm phase off western Australian coast. The above changes bring about cooling in the western-central tropical Pacific and strengthened Leeuwin Current and anomalous cyclonic wind off western Australian coast, and ultimately resulting in enhanced coupling between these two regions. Our results suggest that enhanced decadal interbasin connections can offer further understanding of decadal changes under future warmer conditions.

2.
Sci Adv ; 9(43): eadi5507, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878709

RESUMEN

The Atlantic Niño is characterized by sea surface warming in the equatorial Atlantic, which can trigger La Niña, the cold phase of El Niño-Southern Oscillation (ENSO). Although observations show that the Atlantic Niño has weakened by approximately 30% since the 1970s, its remote influence on ENSO remains strong. Here, we show that this apparent discrepancy is due to the existence of two types of Atlantic Niño with distinct patterns and climatic impacts, which we refer to as the central and eastern Atlantic Niño. Our results show that with equal strength, the central Atlantic Niño has a stronger influence on tropical climate than its eastern counterpart. Meanwhile, the eastern Atlantic Niño has weakened by approximately 50% in recent decades, allowing the central Atlantic Niño to emerge and dominate the remote impact on ENSO. Given the distinct climatic impacts of the two types, it is necessary to distinguish between them and investigate their behaviors and influences on climate in future studies.

3.
Sci Rep ; 12(1): 17380, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253425

RESUMEN

Extraordinary heat extremes occurred in the 1930s in areas of the Northern Hemisphere far from the record setting heat over the US associated with the Great Plains Dust Bowl drought. A climate model sensitivity experiment is used to identify a new mechanism involving a warm season circumglobal atmospheric teleconnection pattern that spread heat extremes over far-flung areas of the Northern Hemisphere arising from the intense heating over the desiccated Great Plains themselves. It has only been in the twenty-first century that human populations in these regions of the Northern Hemisphere have experienced heat extremes comparable to the 1930s. This demonstrates that humans influenced Northern Hemisphere temperature and heat extremes through disastrous and unprecedented regional land use practices over the Great Plains, and points to the possibility that future intense regional droughts could affect heat extremes on hemispheric scales.


Asunto(s)
Sequías , Calor , Cambio Climático , Polvo , Humanos , Estaciones del Año , Temperatura
4.
Nat Commun ; 13(1): 6410, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302781

RESUMEN

Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010-2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.


Asunto(s)
El Niño Oscilación del Sur , Viento , Estaciones del Año , Indonesia , Océano Índico
5.
Sci Rep ; 10(1): 12791, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732943

RESUMEN

Coherent oceanic mesoscale eddies with unique dynamical structures have great impacts on ocean transports and global climate. Eddy kinetic energy (EKE), derived from time-dependent circulation, is commonly used to study mesoscale eddies. However, there are three deficiencies of EKE when focusing on the analysis of coherent mesoscale eddies. Here, we propose a comprehensive concept-Lagrangian EKE (LEKE) as an additional metric which is a combination of gridded EKE calculated in Eulerian framework and tracked coherent mesoscale eddies in Lagrangian framework. Evidences suggest that LEKE can make up these deficiencies as an effective supplement. In this study, regional application over Northwestern Pacific Ocean is taken as an example. It clearly demonstrates that LEKE reveals more accurate and detailed characteristics of both cyclonic and anticyclonic eddies than EKE when coherent mesoscale eddies are the specific focus, such as the variation rates of kinetic energy during the eddy propagation, spatial-temporal differences of kinetic energy between cyclonic and anticyclonic eddies. Overall, using LEKE to analyze coherent mesoscale eddies gives the rise to understand the spatial-temporal contrasts between eddies with different polarities, and provides a new perspective to recognize the crucial role played by coherent mesoscale eddies in the ocean.

6.
J Geophys Res Oceans ; 124(9): 6435-6458, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31763114

RESUMEN

Scientific and societal interest in the relationship between the Atlantic Meridional Overturning Circulation (AMOC) and U.S. East Coast sea level has intensified over the past decade, largely due to (1) projected, and potentially ongoing, enhancement of sea level rise associated with AMOC weakening and (2) the potential for observations of U.S. East Coast sea level to inform reconstructions of North Atlantic circulation and climate. These implications have inspired a wealth of model- and observation-based analyses. Here, we review this research, finding consistent support in numerical models for an antiphase relationship between AMOC strength and dynamic sea level. However, simulations exhibit substantial along-coast and intermodel differences in the amplitude of AMOC-associated dynamic sea level variability. Observational analyses focusing on shorter (generally less than decadal) timescales show robust relationships between some components of the North Atlantic large-scale circulation and coastal sea level variability, but the causal relationships between different observational metrics, AMOC, and sea level are often unclear. We highlight the importance of existing and future research seeking to understand relationships between AMOC and its component currents, the role of ageostrophic processes near the coast, and the interplay of local and remote forcing. Such research will help reconcile the results of different numerical simulations with each other and with observations, inform the physical origins of covariability, and reveal the sensitivity of scaling relationships to forcing, timescale, and model representation. This information will, in turn, provide a more complete characterization of uncertainty in relevant relationships, leading to more robust reconstructions and projections.

7.
Sci Bull (Beijing) ; 64(3): 198-204, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659618

RESUMEN

The Atlantic Multidedal Oscillation (AMO) is a prominent mode of sea surface temperature variability in the Atlantic and incurs significant global influence. Most coupled models failed to reproduce the observed 50-80-year AMO, but were overwhelmed by a 10-30-year AMO. Here we show that the 50-80-year AMO and 10-30-year AMO represent two different AMO regimes. The key differences are: (1) the 50-80-year AMO involves transport of warm and saline Atlantic water into the Greenland-Iceland-Norwegian (GIN) Seas prior to reaching its maximum positive phase, while such a transport is weak for the 10-30-year AMO; (2) the zonality of atmospheric variability associated with the 50-80 year AMO favors the transport of warm and saline water into the GIN Seas; (3) the disappearance of Pacific variability weakens the zonality of atmospheric variability and the transport of warm and saline water into the GIN Seas, leading to the weakening of the 50-80-year AMO. In contrast, the 10-30-year AMO does not show dependence on the variability in Pacific and in the GIN Seas and may be an Atlantic-intrinsic mode. Our results suggest that differentiating these AMO regimes and a better understanding of the cross-basin connections are essential to reconcile the current debate on the nature of AMO and hence to its reliable prediction, which is still lacking in most of coupled models.

8.
Nat Commun ; 9(1): 1068, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540828

RESUMEN

Observational evidence points to a warming global climate accompanied by rising sea levels which impose significant impacts on island and coastal communities. Studies suggest that internal climate processes can modulate projected future sea level rise (SLR) regionally. It is not clear whether this modulation depends on the future climate pathways. Here, by analyzing two sets of ensemble simulations from a climate model, we investigate the potential reduction of SLR, as a result of steric and dynamic oceanographic affects alone, achieved by following a lower emission scenario instead of business-as-usual one over the twenty-first century and how it may be modulated regionally by internal climate variability. Results show almost no statistically significant difference in steric and dynamic SLR on both global and regional scales in the near-term between the two scenarios, but statistically significant SLR reduction for the global mean and many regions later in the century (2061-2080). However, there are regions where the reduction is insignificant, such as the Philippines and west of Australia, that are associated with ocean dynamics and intensified internal variability due to external forcing.

9.
Surv Geophys ; 38(1): 217-250, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32269400

RESUMEN

Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.

10.
Nat Commun ; 7: 11718, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251760

RESUMEN

The negative phase of the Interdecadal Pacific Oscillation (IPO), a dominant mode of multi-decadal variability of sea surface temperatures (SSTs) in the Pacific, contributed to the reduced rate of global surface temperature warming in the early 2000s. A proposed mechanism for IPO multidecadal variability indicates that the presence of decadal timescale upper ocean heat content in the off-equatorial western tropical Pacific can provide conditions for an interannual El Niño/Southern Oscillation event to trigger a transition of tropical Pacific SSTs to the opposite IPO phase. Here we show that a decadal prediction initialized in 2013 simulates predicted Niño3.4 SSTs that have qualitatively tracked the observations through 2015. The year three to seven average prediction (2015-2019) from the 2013 initial state shows a transition to the positive phase of the IPO from the previous negative phase and a resumption of larger rates of global warming over the 2013-2022 period consistent with a positive IPO phase.

11.
Proc Natl Acad Sci U S A ; 109(17): 6417-22, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493225

RESUMEN

Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80-11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the glacial period can lead to the emergence of stronger hysteresis behavior of the ocean conveyor belt circulation to create conditions that are conducive to triggering abrupt climate transitions. Hence, it is argued that even for greenhouse warming, abrupt climate transitions similar to those in the last glacial time are unlikely to occur as the Bering Strait remains open.

12.
Science ; 311(5768): 1751-3, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16556838

RESUMEN

In the future, Arctic warming and the melting of polar glaciers will be considerable, but the magnitude of both is uncertain. We used a global climate model, a dynamic ice sheet model, and paleoclimatic data to evaluate Northern Hemisphere high-latitude warming and its impact on Arctic icefields during the Last Interglaciation. Our simulated climate matches paleoclimatic observations of past warming, and the combination of physically based climate and ice-sheet modeling with ice-core constraints indicate that the Greenland Ice Sheet and other circum-Arctic ice fields likely contributed 2.2 to 3.4 meters of sea-level rise during the Last Interglaciation.

13.
Science ; 307(5716): 1769-72, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15774757

RESUMEN

Two global coupled climate models show that even if the concentrations of greenhouse gases in the atmosphere had been stabilized in the year 2000, we are already committed to further global warming of about another half degree and an additional 320% sea level rise caused by thermal expansion by the end of the 21st century. Projected weakening of the meridional overturning circulation in the North Atlantic Ocean does not lead to a net cooling in Europe. At any given point in time, even if concentrations are stabilized, there is a commitment to future climate changes that will be greater than those we have already observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...