Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 30(8): 2627-2643.e5, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101741

RESUMEN

The conserved Hedgehog signaling pathway has well-established roles in development. However, its function during adulthood remains largely unknown. Here, we investigated whether the Hedgehog signaling pathway is active during adult life in Drosophila melanogaster, and we uncovered a protective function for Hedgehog signaling in coordinating correct proteostasis in glial cells. Adult-specific depletion of Hedgehog reduces lifespan, locomotor activity, and dopaminergic neuron integrity. Conversely, increased expression of Hedgehog extends lifespan and improves fitness. Moreover, Hedgehog pathway activation in glia rescues the lifespan and age-associated defects of hedgehog mutants. The Hedgehog pathway regulates downstream chaperones, whose overexpression in glial cells was sufficient to rescue the shortened lifespan and proteostasis defects of hedgehog mutants. Finally, we demonstrate the protective ability of Hedgehog signaling in a Drosophila Alzheimer's disease model expressing human amyloid beta in the glia. Overall, we propose that Hedgehog signaling is requisite for lifespan determination and correct proteostasis in glial cells.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Longevidad , Neuroglía/metabolismo , Proteostasis , Transducción de Señal , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Mutación/genética , Neuronas/metabolismo , Neuroprotección , Análisis de Supervivencia
2.
JCI Insight ; 5(2)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-31877117

RESUMEN

Friedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis. Here we examined the metabolic, neuroprotective, and frataxin-inducing effects of glucagon-like peptide-1 (GLP-1) analogs in in vivo and in vitro models and in patients with Friedreich ataxia. The GLP-1 analog exenatide improved glucose homeostasis of frataxin-deficient mice through enhanced insulin content and secretion in pancreatic ß cells. Exenatide induced frataxin and iron-sulfur cluster-containing proteins in ß cells and brain and was protective to sensory neurons in dorsal root ganglia. GLP-1 analogs also induced frataxin expression, reduced oxidative stress, and improved mitochondrial function in Friedreich ataxia patients' induced pluripotent stem cell-derived ß cells and sensory neurons. The frataxin-inducing effect of exenatide was confirmed in a pilot trial in Friedreich ataxia patients, showing modest frataxin induction in platelets over a 5-week treatment course. Taken together, GLP-1 analogs improve mitochondrial function in frataxin-deficient cells and induce frataxin expression. Our findings identify incretin receptors as a therapeutic target in Friedreich ataxia.


Asunto(s)
Exenatida/farmacología , Ataxia de Friedreich/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Mitocondrias/metabolismo , Adolescente , Adulto , Anciano , Animales , Encéfalo/patología , Cerebelo/patología , Modelos Animales de Enfermedad , Exenatida/uso terapéutico , Femenino , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ganglios Espinales/patología , Técnicas de Sustitución del Gen , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Hierro/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Expansión de Repetición de Trinucleótido , Adulto Joven , Frataxina
3.
Brain ; 139(Pt 3): 953-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26912634

RESUMEN

Huntington's disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington's disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington's disease patients when compared to controls. Cyp46A1 mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington's disease mouse model and in SThdhQ111 cell lines. In vivo, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington's disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod. In vitro, CYP46A1 restoration protected SThdhQ111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington's disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol. In vitro, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington's disease.


Asunto(s)
Colesterol/metabolismo , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/prevención & control , Esteroide Hidroxilasas/biosíntesis , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Colesterol 24-Hidroxilasa , Femenino , Humanos , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Persona de Mediana Edad
4.
Hum Mol Genet ; 25(22): 4847-4855, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28175303

RESUMEN

We employed induced pluripotent stem cell (iPSC)-derived neurons obtained from Friedreich ataxia (FRDA) patients and healthy subjects, FRDA neurons and CT neurons, respectively, to unveil phenotypic alterations related to frataxin (FXN) deficiency and investigate if they can be reversed by treatments that upregulate FXN. FRDA and control iPSCs were equally capable of differentiating into a neuronal or astrocytic phenotype. FRDA neurons showed lower levels of iron­sulfur (Fe­S) and lipoic acid-containing proteins, higher labile iron pool (LIP), higher expression of mitochondrial superoxide dismutase (SOD2), increased reactive oxygen species (ROS) and lower reduced glutathione (GSH) levels, and enhanced sensitivity to oxidants compared with CT neurons, indicating deficient Fe­S cluster biogenesis, altered iron metabolism, and oxidative stress. Treatment with the benzamide HDAC inhibitor 109 significantly upregulated FXN expression and increased Fe­S and lipoic acid-containing protein levels, downregulated SOD2 levels, normalized LIP and ROS levels, and almost fully protected FRDA neurons from oxidative stress-mediated cell death. Our findings suggest that correction of FXN deficiency may not only stop disease progression, but also lead to clinical improvement by rescuing still surviving, but dysfunctional neurons.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Benzamidas/farmacología , Ataxia de Friedreich/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Neuronas/citología , Estrés Oxidativo/fisiología , Fenotipo , Superóxido Dismutasa/metabolismo , Ácido Tióctico/metabolismo , Frataxina
5.
Hum Mol Genet ; 24(8): 2274-86, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25552656

RESUMEN

Friedreich's ataxia (FRDA) is a neurodegenerative disorder associated with cardiomyopathy and diabetes. Effective therapies for FRDA are an urgent unmet need; there are currently no options to prevent or treat this orphan disease. FRDA is caused by reduced expression of the mitochondrial protein frataxin. We have previously demonstrated that pancreatic ß-cell dysfunction and death cause diabetes in FRDA. This is secondary to mitochondrial dysfunction and apoptosis but the underlying molecular mechanisms are not known. Here we show that ß-cell demise in frataxin deficiency is the consequence of oxidative stress-mediated activation of the intrinsic pathway of apoptosis. The pro-apoptotic Bcl-2 family members Bad, DP5 and Bim are the key mediators of frataxin deficiency-induced ß-cell death. Importantly, the intrinsic pathway of apoptosis is also activated in FRDA patients' induced pluripotent stem cell-derived neurons. Interestingly, cAMP induction normalizes mitochondrial oxidative status and fully prevents activation of the intrinsic pathway of apoptosis in frataxin-deficient ß-cells and neurons. This preclinical study suggests that incretin analogs hold potential to prevent/delay both diabetes and neurodegeneration in FRDA.


Asunto(s)
Apoptosis , Ataxia de Friedreich/fisiopatología , Células Secretoras de Insulina/citología , Neuronas/citología , Animales , Línea Celular , Diabetes Mellitus/etiología , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Femenino , Ataxia de Friedreich/complicaciones , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA