Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847794

RESUMEN

Traditional Li-ion intercalation chemistry into graphite anodes exclusively utilizes the cointercalation-free or cointercalation mechanism. The latter mechanism is based on ternary graphite intercalation compounds (t-GICs), where glyme solvents were explored and proved to deliver unsatisfactory cyclability in LIBs. Herein, we report a novel intercalation mechanism, that is, in situ synthesis of t-GIC in the tetrahydrofuran (THF) electrolyte via a spontaneous, controllable reaction between binary-GIC (b-GIC) and free THF molecules during initial graphite lithiation. The spontaneous transformation from b-GIC to t-GIC, which is different from conventional cointercalation chemistry, is characterized and quantified via operando synchrotron X-ray and electrochemical analyses. The resulting t-GIC chemistry obviates the necessity for complete Li-ion desolvation, facilitating rapid kinetics and synchronous charge/discharge of graphite particles, even under high current densities. Consequently, the graphite anode demonstrates unprecedented fast charging (1 min), dendrite-free low-temperature performance, and ultralong lifetimes exceeding 10 000 cycles. Full cells coupled with a layered cathode display remarkable cycling stability upon a 15 min charging and excellent rate capability even at -40 °C. Furthermore, our chemical strategies are shown to extend beyond Li-ion batteries to encompass Na-ion and K-ion batteries, underscoring their broad applicability. Our work contributes to the advancement of graphite intercalation chemistry and presents a low-cost, adaptable approach for achieving fast-charging and low-temperature batteries.

2.
Food Chem ; 446: 138815, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428087

RESUMEN

In this study, we developed a process combining dilute alkali (NaOH or NaHCO3) and physical (disk milling and/or ball milling) treatments to improve the functionality and fermentability of corn fiber. The results showed that combining chemical with physical processes greatly improved the functionality and fermentability of corn fiber. Corn fiber treated with NaOH followed by disk milling (NaOH-DM-CF) had the highest water retention (19.5 g/g), water swelling (38.8 mL/g), and oil holding (15.5 g/g) capacities. Moreover, NaOH-DM-CF produced the largest amount (42.9 mM) of short-chain fatty acid (SCFA) during the 24-hr in vitro fermentation using porcine fecal inoculum. In addition, in vitro fermentation of NaOH-DM-CF led to a targeted microbial shifting to Prevotella (genus level), aligning with a higher fraction of propionic acid. The outstanding functionality and fermentability of NaOH-DM-CF were attributed to its thin and loose structure, decreased ester linkages and acetyl groups, and enriched structural carbohydrate exposure.


Asunto(s)
Fibras de la Dieta , Microbioma Gastrointestinal , Animales , Porcinos , Fibras de la Dieta/análisis , Zea mays/química , Álcalis , Hidróxido de Sodio , Alimentación Animal/análisis , Heces/química , Ácidos Grasos Volátiles/análisis , Agua/análisis , Fermentación
3.
Micromachines (Basel) ; 15(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38398915

RESUMEN

Flexible pressure sensors play a crucial role in detecting human motion and facilitating human-computer interaction. In this paper, a type of flexible pressure sensor unit with high sensitivity (2.242 kPa-1), fast response time (80 ms), and remarkable stability (1000 cycles) is proposed and fabricated by the multi-walled carbon nanotube (MWCNT)/cotton fabric (CF) material based on a dip-coating method. Six flexible pressure sensor units are integrated into a flexible wristband and made into a wearable and portable wrist sensor with favorable stability. Then, seven wrist gestures (Gesture Group #1), five letter gestures (Gesture Group #2), and eight sign language gestures (Gesture Group #3) are performed by wearing the wrist sensor, and the corresponding time sequence signals of the three gesture groups (#1, #2, and #3) from the wrist sensor are collected, respectively. To efficiently recognize different gestures from the three groups detected by the wrist sensor, a fusion network model combined with a convolutional neural network (CNN) and the bidirectional long short-term memory (BiLSTM) neural network, named CNN-BiLSTM, which has strong robustness and generalization ability, is constructed. The three types of Gesture Groups were recognized based on the CNN-BiLSTM model with accuracies of 99.40%, 95.00%, and 98.44%. Twenty gestures (merged by Group #1, #2, and #3) were recognized with an accuracy of 96.88% to validate the applicability of the wrist sensor based on this model for gesture recognition. The experimental results denote that the CNN-BiLSTM model has very efficient performance in recognizing different gestures collected from the flexible wrist sensor.

4.
Proc Natl Acad Sci U S A ; 121(5): e2313096121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261613

RESUMEN

Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li-solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.

5.
J Am Chem Soc ; 145(30): 16538-16547, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466049

RESUMEN

Solid-electrolyte interphases (SEIs) in advanced rechargeable batteries ensure reversible electrode reactions at extreme potentials beyond the thermodynamic stability limits of electrolytes by insulating electrons while allowing the transport of working ions. Such selective ion transport occurs naturally in biological cell membranes as a ubiquitous prerequisite of many life processes and a foundation of biodiversity. In addition, cell membranes can selectively open and close the ion channels in response to external stimuli (e.g., electrical, chemical, mechanical, and thermal), giving rise to "gating" mechanisms that help manage intracellular reactions. We wondered whether the chemistry and structure of SEIs can mimic those of cell membranes, such that ion gating can be replicated. That is, can SEIs realize a reversible switching between two electrochemical behaviors, i.e., the ion intercalation chemistry of batteries and the ion adsorption of capacitors? Herein, we report such SEIs that result in thermally activated selective ion transport. The function of open/close gate switches is governed by the chemical and structural dynamics of SEIs under different thermal conditions, with precise behaviors as conducting and insulating interphases that enable battery and capacitive processes within a finite temperature window. Such an ion gating function is synergistically contributed by Arrhenius-activated ion transport and SEI dissolution/regrowth. Following the understanding of this new mechanism, we then develop an electrochemical method to heal the SEI layer in situ. The knowledge acquired in this work reveals the possibility of hitherto unknown biomimetic properties of SEIs, which will guide us to leverage such complexities to design better SEIs for future battery chemistries.

6.
Nat Nanotechnol ; 18(7): 790-797, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37081082

RESUMEN

Mn dissolution has been a long-standing, ubiquitous issue that negatively impacts the performance of Mn-based battery materials. Mn dissolution involves complex chemical and structural transformations at the electrode-electrolyte interface. The continuously evolving electrode-electrolyte interface has posed great challenges for characterizing the dynamic interfacial process and quantitatively establishing the correlation with battery performance. In this study, we visualize and quantify the temporally and spatially resolved Mn dissolution/redeposition (D/R) dynamics of electrochemically operating Mn-containing cathodes. The particle-level and electrode-level analyses reveal that the D/R dynamics is associated with distinct interfacial degradation mechanisms at different states of charge. Our results statistically differentiate the contributions of surface reconstruction and Jahn-Teller distortion to the Mn dissolution at different operating voltages. Introducing sulfonated polymers (Nafion) into composite electrodes can modulate the D/R dynamics by trapping the dissolved Mn species and rapidly establishing local Mn D/R equilibrium. This work represents an inaugural effort to pinpoint the chemical and structural transformations responsible for Mn dissolution via an operando synchrotron study and develops an effective method to regulate Mn interfacial dynamics for improving battery performance.

7.
ACS Appl Mater Interfaces ; 14(10): 12130-12139, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230797

RESUMEN

Improving electrolyte stability to suppress water electrolysis represents a basic principle for designing aqueous batteries. Herein, we investigate counterintuitive roles that water electrolysis plays in regulating intercalation chemistry. Using the NaxFe[Fe(CN)6]∥NaTi2(PO4)3 (x < 1) aqueous battery as a platform, we report that high-voltage overcharging can serve as an electrochemical activation approach to achieving concurrent Na-ion intercalation and an electrolytic oxygen evolution reaction. When the cell capacity is intrinsically limited by deficient cyclable Na ions, the electrolytic water oxidation on the cathode allows for extra Na-ion intercalation from the electrolyte to the NaTi2(PO4)3 anode, leading to a major increase in cyclable Na ions and specific capacity. The parasitic oxygen generation and potential transition-metal dissolution, as proved by our synchrotron and imaging tools, can be significantly mitigated with a simple reassembling approach, which enables stable electrochemical performance and sheds light on manipulating ion intercalation and water electrolysis for battery fast charging and recycling.

8.
J Am Chem Soc ; 143(44): 18519-18526, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34641670

RESUMEN

The surface of an electrocatalyst undergoes dynamic chemical and structural transformations under electrochemical operating conditions. There is a dynamic exchange of metal cations between the electrocatalyst and electrolyte. Understanding how iron in the electrolyte gets incorporated in the nickel hydroxide electrocatalyst is critical for pinpointing the roles of Fe during water oxidation. Here, we report that iron incorporation and oxygen evolution reaction (OER) are highly coupled, especially at high working potentials. The iron incorporation rate is much higher at OER potentials than that at the OER dormant state (low potentials). At OER potentials, iron incorporation favors electrochemically more reactive edge sites, as visualized by synchrotron X-ray fluorescence microscopy. Using X-ray absorption spectroscopy and density functional theory calculations, we show that Fe incorporation can suppress the oxidation of Ni and enhance the Ni reducibility, leading to improved OER catalytic activity. Our findings provide a holistic approach to understanding and tailoring Fe incorporation dynamics across the electrocatalyst-electrolyte interface, thus controlling catalytic processes.

9.
Risk Manag Healthc Policy ; 14: 1869-1879, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007225

RESUMEN

BACKGROUND: During a public health emergency, social media is a major conduit or vector for spreading health misinformation. Understanding the characteristics of health misinformation can be a premise for rebuking and purposefully correcting such misinformation on social media. METHODS: Using samples of China's misinformation on social media related to the COVID-19 outbreak (N=547), the objective of this article was to illustrate the characteristics of said misinformation on social media in China by descriptive analysis, including the typology, the most-mentioned information, and a developmental timeline. RESULTS: The results reveal that misinformation related to preventive and therapeutic methods is the most-mentioned type. Other types of misinformation associated with people's daily lives are also widespread. Moreover, cultural and social beliefs have an impact on the perception and propaganda of misinformation, and changes in the crisis situation are relevant to the type variance of misinformation. CONCLUSION: Following research results, strategies of health communication for managing misinformation on social media are given, such as credible sources and expert sources. Also, traditional beliefs or perceptions play the vital role in health communication. To sum up, combating misinformation on social media is likely not a single effort to correct misinformation or to prevent its spread. Instead, scholars, journalists, educators, and citizens must collaboratively identify and correct any misinformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA