Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135099, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981236

RESUMEN

The substantial use of antibiotics contributes to the spread and evolution of antibiotic resistance, posing potential risks to food production systems, including mushroom production. In this study, the potential risk of antibiotics to Stropharia rugosoannulata, the third most productive straw-rotting mushroom in China, was assessed, and the underlying mechanisms were investigated. Tetracycline exposure at environmentally relevant concentrations (<500 µg/L) did not influence the growth of S. rugosoannulata mycelia, while high concentrations of tetracycline (>500 mg/L) slightly inhibited its growth. Biodegradation was identified as the main antibiotic removal mechanism in S. rugosoannulata, with a degradation rate reaching 98.31 % at 200 mg/L tetracycline. High antibiotic removal efficiency was observed with secreted proteins of S. rugosoannulata, showing removal efficiency in the order of tetracyclines > sulfadiazines > quinolones. Antibiotic degradation products lost the ability to inhibit the growth of Escherichia coli, and tetracycline degradation products could not confer a growth advantage to antibiotic-resistant strains. Two laccases, SrLAC1 and SrLAC9, responsible for antibiotic degradation were identified based on proteomic analysis. Eleven antibiotics from tetracyclines, sulfonamides, and quinolones families could be transformed by these two laccases with degradation rates of 95.54-99.95 %, 54.43-100 %, and 5.68-57.12 %, respectively. The biosafety of the antibiotic degradation products was evaluated using the Toxicity Estimation Software Tool (TEST), revealing a decreased toxicity or no toxic effect. None of the S. rugosoannulata fruiting bodies from seven provinces in China contained detectable antibiotic-resistance genes (ARGs). This study demonstrated that S. rugosoannulata can degrade antibiotics into non-toxic and non-bactericidal products that do not accelerate the spread of antibiotic resistance, ensuring the safety of S. rugosoannulata production.


Asunto(s)
Antibacterianos , Lacasa , Antibacterianos/toxicidad , Antibacterianos/farmacología , Lacasa/metabolismo , Lacasa/genética , Biodegradación Ambiental , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Tetraciclina/toxicidad , Agaricales/efectos de los fármacos , Agaricales/enzimología
2.
Int J Med Sci ; 21(9): 1756-1768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006838

RESUMEN

There are more than 70 million people worldwide living with epilepsy, with most experiencing the onset of epilepsy in childhood. Despite the availability of more than 20 anti-seizure medications, approximately 30% of epilepsy patients continue to experience unsatisfactory treatment outcomes. This situation places a heavy burden on patients' families and society. Childhood epilepsy is a significant chronic neurological disease that is closely related to genetics. Col4a2, the gene encoding the α2 chain of type IV collagen, is known to be associated with multiple diseases due to missense mutations. The Col4a2 variant of collagen type IV is associated with various phenotypes, including prenatal and neonatal intracranial hemorrhage, porencephaly, porencephaly with cataracts, focal cortical dysplasia, schizencephaly, strokes in childhood and adolescence, and sporadic delayed hemorrhagic stroke. Although epilepsy is recognized as a clinical manifestation of porencephaly, the specific mechanism of Col4a2-related epileptic phenotypes remains unclear. A total of 8 patients aged 2 years and 2 months to 18 years who were diagnosed with Col4a2-related infantile epileptic spasm syndrome were analyzed. The seizure onset age ranged from 3 to 10 months. Initial EEG results revealed hypsarrhythmia or multiple and multifocal sharp waves, spike waves, sharp slow waves, or spike slow waves. Elevated levels of the cytokines IL-1ß (32.23±12.58 pg/ml) and IL-6 (45.12±16.03 pg/ml) were detected in the cerebrospinal fluid of these patients without any signs of infection. Following antiseizure treatment, decreased IL-1ß and IL-6 levels in the cerebrospinal fluid were noted when seizures were under control. Furthermore, we aimed to investigate the role of Col4a2 mutations in the development of epilepsy. Through the use of immunofluorescence assays, ELISA, and Western blotting, we examined astrocyte activity and the expression of inflammatory cytokines such as IL-1ß, IL-6, and TNF-α after overexpressing an unreported Col4a2 (c.1838G>T) mutant in CTX-TNA cells and primary astrocytes. We found that the levels of the inflammatory factors IL-1ß, IL-6, and TNF-α were increased in both CTX-TNA cells (ELISA: p = 0.0087, p<0.001, p<0.001, respectively) and primary astrocytes (ELISA: p = 0.0275, p<0.001, p<0.001, respectively). Additionally, we conducted a preliminary investigation of the role of the JAK/STAT pathway in Col4a2 mutation-associated epilepsy. Col4a2 mutation stimulated astrocyte activation, increasing iNOS, COX-2, IL-1ß, IL-6, and TNF-α levels in both CTX-TNA cells and primary astrocytes. This mutation also activated the JAK/STAT signaling pathway, leading to increased phosphorylation of JAK2 and STAT3. Treatment with the JAK/STAT inhibitor WP1066 effectively counteracted this effect in primary astrocytes and CTX-TNA cells. To date, the genes who mutations are known to cause developmental and epileptic encephalopathies (DEEs) are predominantly grouped into six subtypes according to function. Our study revealed that an unreported mutation site Col4a2Mut (c.1838G>T) of which can cause neuroinflammation, may be a type VII DEE-causing gene.


Asunto(s)
Colágeno Tipo IV , Espasmos Infantiles , Humanos , Masculino , Niño , Femenino , Espasmos Infantiles/genética , Preescolar , Adolescente , Colágeno Tipo IV/genética , Lactante , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/patología , Mutación Missense/genética , Electroencefalografía , Interleucina-1beta/genética , Mutación , Interleucina-6/genética , Interleucina-6/metabolismo
3.
Epilepsy Behav Rep ; 26: 100671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708366

RESUMEN

KCNH5 gene encodes for the voltage-gated potassium channel protein Kv10.2. Here, we investigated the clinical features of developmental and epileptic encephalopathy (DEE) in five Chinese pediatric patients with a missense mutation (p.R327H) in KCNH5 gene. These patients had undergone video EEG to evaluate background features and epileptiform activity, as well as 3.0 T MRI scans for structural analysis and intelligence assessments using the Gesell Developmental Observation or Wechsler Intelligence Scale for Children. Seizure onset occurs between 4 and 10 months of age, with focal and generalized tonic-clonic seizures being common. Initial EEG findings showed multiple multifocal sharp waves, sharp slow waves or spike slow waves, and spike waves. Brain MRI revealed widened extracerebral space in only one patient. Mechanistically, the KCNH5 mutation disrupts the two hydrogen bonds between Arg327 and Asp304 residues, potentially altering the protein's structural stability and function. Almost 80 % of patients receiving add-on valproic acid (VPA) therapy experienced a reduction in epileptic seizure frequency. Altogether, this study presents the first Chinese cohort of pediatric DEE patients with the KCNH5 p.R327H mutation, highlighting focal seizures as the predominant seizure type and incomplete mutation penetrance. Add-on VPA therapy was likely effective in the early stages of DEE pathogenesis.

4.
Epilepsia ; 65(8): 2308-2321, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802989

RESUMEN

OBJECTIVES: We aimed to develop consensus on comorbidities (frequency, severity, and prognosis) and overall outcomes in epilepsy, development, and cognition for the five phenotypes of SCN8A-related disorders. METHODS: A core panel consisting of 13 clinicians, 1 researcher, and 6 caregivers was formed and split into three workgroups. One group focused on comorbidities and prognosis. All groups performed a literature review and developed questions for use in a modified-Delphi process. Twenty-eight clinicians, one researcher, and 13 caregivers from 16 countries participated in three rounds of the modified-Delphi process. Consensus was defined as follows: strong consensus ≥80% fully agree; moderate consensus ≥80% fully or partially agree, <10% disagree; and modest consensus 67%-79% fully or partially agree, <10% disagree. RESULTS: Consensus was reached on the presence of 14 comorbidities in patients with Severe Developmental and Epileptic Encephalopathy (Severe DEE) spanning non-seizure neurological disorders and other organ systems; impacts were mostly severe and unlikely to improve or resolve. Across Mild/Moderate Developmental and Epileptic Encephalopathy (Mild/Moderate DEE), Neurodevelopmental Delay with Generalized Epilepsy (NDDwGE), and NDD without Epilepsy (NDDwoE) phenotypes, cognitive and sleep-related comorbidities as well as fine and gross motor delays may be present but are less severe and more likely to improve compared to Severe DEE. There was no consensus on comorbidities in the SeL(F)IE phenotype but strong conesensus that seizures would largely resolve. Seizure freedom is rare in patients with Severe DEE but may occur in some with Mild/Moderate DEE and NDDwGE. SIGNIFICANCE: Significant comorbidities are present in most phenotypes of SCN8A-related disorders but are most severe and pervasive in the Severe DEE phenotype. We hope that this work will improve recognition, early intervention, and long-term management for patients with these comorbidities and provide the basis for future evidence-based studies on optimal treatments of SCN8A-related disorders. Identifying the prognosis of patients with SCN8A-related disorders will also improve care and quality-of-life for patients and their caregivers.


Asunto(s)
Comorbilidad , Consenso , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Trastornos del Neurodesarrollo , Humanos , Técnica Delphi , Epilepsia/epidemiología , Epilepsia/genética , Epilepsia/diagnóstico , Canal de Sodio Activado por Voltaje NAV1.6/genética , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Pronóstico
5.
Epilepsia ; 65(8): 2322-2338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802994

RESUMEN

OBJECTIVE: We aimed to develop consensus for diagnosis/management of SCN8A-related disorders. Utilizing a modified Delphi process, a global cohort of experienced clinicians and caregivers provided input on diagnosis, phenotypes, treatment, and management of SCN8A-related disorders. METHODS: A Core Panel (13 clinicians, one researcher, six caregivers), divided into three subgroups (diagnosis/phenotypes, treatment, comorbidities/prognosis), performed a literature review and developed questions for the modified Delphi process. Twenty-eight expert clinicians, one researcher, and 13 caregivers from 16 countries participated in the subsequent three survey rounds. We defined consensus as follows: strong consensus, ≥80% fully agree; moderate consensus, ≥80% fully/partially agree, <10% disagree; and modest consensus, 67%-79% fully/partially agree, <10% disagree. RESULTS: Early diagnosis is important for long-term clinical outcomes in SCN8A-related disorders. There are five phenotypes: three with early seizure onset (severe developmental and epileptic encephalopathy [DEE], mild/moderate DEE, self-limited (familial) infantile epilepsy [SeL(F)IE]) and two with later/no seizure onset (neurodevelopmental delay with generalized epilepsy [NDDwGE], NDD without epilepsy [NDDwoE]). Caregivers represented six patients with severe DEE, five mild/moderate DEE, one NDDwGE, and one NDDwoE. Phenotypes vary by age at seizures/developmental delay onset, seizure type, electroencephalographic/magnetic resonance imaging findings, and first-line treatment. Gain of function (GOF) versus loss of function (LOF) is valuable for informing treatment. Sodium channel blockers are optimal first-line treatment for GOF, severe DEE, mild/moderate DEE, and SeL(F)IE; levetiracetam is relatively contraindicated in GOF patients. First-line treatment for NDDwGE is valproate, ethosuximide, or lamotrigine; sodium channel blockers are relatively contraindicated in LOF patients. SIGNIFICANCE: This is the first-ever global consensus for the diagnosis and treatment of SCN8A-related disorders. This consensus will reduce knowledge gaps in disease recognition and inform preferred treatment across this heterogeneous disorder. Consensus of this type allows more clinicians to provide evidence-based care and empowers SCN8A families to advocate for their children.


Asunto(s)
Consenso , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Trastornos del Neurodesarrollo , Humanos , Anticonvulsivantes/uso terapéutico , Técnica Delphi , Epilepsia/diagnóstico , Epilepsia/terapia , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/terapia , Fenotipo
6.
Ecotoxicol Environ Saf ; 276: 116324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636260

RESUMEN

Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.


Asunto(s)
Biodegradación Ambiental , Colorantes , Lacasa , Proteómica , Hongos Shiitake , Tetraciclina , Lacasa/metabolismo , Lacasa/genética , Tetraciclina/toxicidad , Tetraciclina/farmacología , Colorantes/toxicidad , Colorantes/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Bacillus subtilis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología
7.
Antimicrob Agents Chemother ; 68(5): e0144923, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501660

RESUMEN

Albendazole (ABZ) is the primary treatment for alveolar echinococcosis (AE); however, its limited solubility impacts oral bioavailability, affecting therapeutic outcomes. In this study, various ABZ-solubilizing formulations, including albendazole crystal dispersion system (ABZ-CSD), albendazole hydrochloride-hydroxypropyl methylcellulose phthalate composite (TABZ-HCl-H), and albendazole hydroxyethyl sulfonate-hydroxypropyl methylcellulose phthalate composite (TABZ-HES-H), were developed and evaluated. Physicochemical properties as well as liver enzyme activity were analyzed and their pharmacodynamics in an anti-secondary hepatic alveolar echinococcosis (HAE) rat model were investigated. The formulations demonstrated improved solubility, exhibiting enhanced inhibitory effects on microcysts in HAE model rats compared to albendazole tablets. However, altered hepatic drug-metabolizing enzymes in HAE model rats led to increased ABZ levels and reduced ABZ-SO production, potentially elevating drug toxicity. These findings emphasize the importance of dose adjustments in patient administration, considering the impact of alveolar echinococcosis on rat hepatic drug metabolism.


Asunto(s)
Albendazol , Modelos Animales de Enfermedad , Equinococosis Hepática , Animales , Albendazol/farmacología , Albendazol/farmacocinética , Albendazol/uso terapéutico , Ratas , Equinococosis Hepática/tratamiento farmacológico , Equinococosis Hepática/parasitología , Masculino , Ratas Sprague-Dawley , Hígado/parasitología , Hígado/efectos de los fármacos , Hígado/metabolismo , Solubilidad
8.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38139767

RESUMEN

This study investigates the influence of humidity on the dissolution behavior and microstructure of drugs in crystalline solid dispersions (CSDs). Using Bifonazole (BFZ) as a model drug, CSDs were prepared through spray drying with carriers such as Poloxamer 188 (P188), Poloxamer 407 (P407), and polyethylene glycol 8000 (PEG8000). The solubilization effect and mechanism were initially evaluated, followed by an examination of the impact of humidity (RH10%) on the dissolution behavior of CSDs. Furthermore, the influence of humidity on the microstructure of CSDs was investigated, and factors affecting the humidity stability of CSDs were summarized. Significant enhancements in the intrinsic dissolution rate (IDR) of BFZ in CSDs were observed due to changes in crystalline size and crystallinity, with the CSD-P188 system exhibiting the best performance. Following humidity treatment, the CSD-P407 system demonstrated the least change in the IDR of BFZ, indicating superior stability. The CSD-P407 system was followed by the CSD-P188 system, with the CSD-PEG8000 system exhibiting the least stability. Further analysis of the microstructure revealed that while humidity had negligible effects on the crystalline size and crystallinity of BFZ in CSDs, it had a significant impact on the distribution of BFZ on the CSD surface. This can be attributed to the water's potent plasticizing effect, which significantly alters the molecular mobility of BFZ. Additionally, the compatibility of the three polymers with BFZ differs, with CSD-P407 > CSD-P188 > CSD-PEG8000. Under the continuous influence of water, stronger compatibility leads to lower molecular mobility and more uniform drug distribution on the CSD surface. Enhancing the compatibility of drugs with polymers can effectively reduce the mobility of BFZ in CSDs, thereby mitigating changes caused by water and ultimately stabilizing the surface composition and dissolution behavior of drugs in CSDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...