Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38005876

RESUMEN

Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other complications that can be fatal, especially in vulnerable populations such as the elderly, young children, and individuals with underlying health conditions. Despite previous studies, little is known about the host immune response and neuroimmune interactions in IAV infection. Using RNA sequencing, we performed transcriptomic analysis of murine lung tissue 21 days post infection (dpi) with IAV (H1N1) in order to find the differentially expression genes (DEGs) related to the host immune response and neuroimmune interactions inside the lung during recovery. Among 792 DEGs, 434 genes were up-regulated, whereas 358 genes were down-regulated. The most prominent molecular functions of the up-regulated genes were related to the immune response and tissue repair, whereas a large proportion of the down-regulated genes were associated with neural functions. Although further molecular/functional studies need to be performed for these DEGs, our results facilitate the understanding of the host response (from innate immunity to adaptive immunity) and neuroimmune interactions in infected lungs at the recovery stage of IAV infection. These genes might have potential uses as mechanistic/diagnostic biomarkers and represent possible targets for anti-IAV therapies.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Neumonía , Animales , Humanos , Ratones , Inmunidad Innata , Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/genética , Pulmón , Análisis de Secuencia de ARN , Transcriptoma
2.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37777837

RESUMEN

AIMS: This study aims to investigate the specific membrane antigens that are targeted by antibodies raised against Helicobacter pylori. METHODS AND RESULTS: Bovine milk antibodies were prepared using whole H. pylori, purified membrane proteins, or both. Enzyme-linked immunosorbent assay and sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments revealed that these immunogens triggered anti-H. pylori antibody production in milk. The highest antibody titer was induced by the mixture of whole bacteria and purified membrane proteins. The antibodies induced by mixed immunogens significantly inhibited H. pylori growth in vitro and were used to identify catalase, plasminogen-binding protein A (PgbA), and PgbB via western blotting, immunoprecipitation, and two-dimensional western blotting followed by liquid chromatography with tandem mass spectrophotometry. The immunogenicity of PgbA and PgbB was verified in mice vaccinated with their B-cell epitope vaccines. Following prophylactic vaccination of C57BL/6 mice, each of the three antigens alone and their combination reduced the weight loss in mice, increased antibody titers, and relieved the inflammatory status of the gastric mucosa following H. pylori infection. CONCLUSIONS: Catalase, PgbA, and PgbB could serve as valuable membrane antigens for the development of anti-H. pylori immunotherapies.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Catalasa , Proteínas de la Membrana , Formación de Anticuerpos , Ratones Endogámicos C57BL , Antígenos Bacterianos , Infecciones por Helicobacter/prevención & control , Anticuerpos Antibacterianos
3.
Front Immunol ; 14: 1254054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767094

RESUMEN

The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.

4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(6): 564-570, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37340926

RESUMEN

Helicobacter pylori (Hp) is one of most common pathogens causing gastrointestinal disorder including gastric ulcer, duodenal ulcer and gastric cancer, etc. It has been verified as class I carcinogen by WHO. Nowadays, combination antibiotics and proton pump inhibitor are mainly used to erase Hp in clinical application. However, with the increased resistance of Hp, the vaccine against Hp might become the best strategy to eradicate Hp. Elements including urease, virulence factor, outer membrane protein, flagella, play an important role in Hp infection, colonization and reproduction. They have become potential candidate antigens in the development of Hp vaccine, as reported in previous studies. Presently, these antigens-centric vaccines have been tested in animal models. Therefore, this article reviews the studies on Hp vaccine with urease, virulence genes, outer membrane protein and flagella as their candidate antigens, in an attempt to provide insights for research in this regard.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Vacunas , Animales , Ureasa/genética , Infecciones por Helicobacter/prevención & control , Proteínas de la Membrana
5.
Exp Biol Med (Maywood) ; 248(8): 732-745, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37354086

RESUMEN

Prevascularization is crucial for the survival of tissue-engineered bone and further bone repair/regeneration. Since epicatechin gallate (ECG), the most abundant flavanol in green tea, shows potential beneficial effects on endothelial cells and bone cells, we decided to investigate whether it promotes vascularization/angiogenesis and osteogenesis using a co-culture system containing human primary osteoblasts (POBs) and outgrowth endothelial cells (OECs). We found that treatment with ECG (1) significantly enhanced microvessel formation in co-culture of POB and OECs, (2) improved cell viability/proliferation and the angiogenic/osteogenic capacities of OEC/POBs, (3) significantly increased the levels of E-selectin, IL-6, TNF-α, IFN-γ, VEGF, and PDGF-BB in co-cultures of POB and OEC, and (4) upregulated HIF-1α, HIF-2α, NF-κB, iNOS, GLUT1, VEGF, and Ang1/2 but downregulated PHD1 in monocultures of OEC or POB. Our findings demonstrate that ECG promotes angiogenesis and osteogenesis (probably via HIF signaling) in co-cultures of OECs and POBs. ECG thus has potential applications in the promotion of angiogenesis/vascularization in many tissue constructs including those of bone.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Humanos , Técnicas de Cocultivo , Neovascularización Fisiológica , Osteoblastos , Neovascularización Patológica , Osteogénesis
6.
Front Cell Infect Microbiol ; 12: 960938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268226

RESUMEN

Coronavirus disease 2019 (COVID-19) is an extremely contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early disease recognition of COVID-19 is crucial not only for prompt diagnosis and treatment of the patients, but also for effective public health surveillance and response. The reverse transcription-polymerase chain reaction (RT-PCR) is the most common method for the detection of SARS-CoV-2 viral mRNA and is regarded as the gold standard test for COVID-19. However, this test and those for antibodies (IgM and IgG) and antigens have certain limitations (e.g., by yielding false-negative and false-positive results). We have developed an RNA fluorescence in situ hybridization (FISH) method for high-sensitivity detection of SARS-CoV-2 mRNAs in HEK 293T cell cultures as a model. After transfection of HEK 293T cells with plasmids, Spike (S)/envelope (E) proteins and their mRNAs were clearly detected inside the cells. In addition, hybridization time could be reduced to 2 hours for faster detection when probe concentration was increased. Our approach might thus significantly improve the sensitivity and specificity of SARS-CoV-2 detection and be widely applied for the high-sensitivity single-molecular detection of other RNA viruses (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), Hepatitis A virus, all influenza viruses, and human immunodeficiency virus (HIV)) in various types of samples including tissue, body fluid, blood, and water. RNA FISH can also be utilized for the detection of DNA viruses (e.g., Monkeypox virus, human papillomavirus (HPV), and cytomegalovirus (CMV)) by detection of their mRNAs inside cells or body fluid.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , ARN Mensajero/genética , Hibridación Fluorescente in Situ , Células HEK293 , Inmunoglobulina M , Inmunoglobulina G , Agua
7.
J Food Biochem ; 46(10): e14329, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867029

RESUMEN

During the implantation of functional tissue-engineered constructs for treating bone defects, a functional vascular network is critical for the survival of the construct. One strategy to achieve rapid angiogenesis for this application is the co-culture of outgrowth endothelial cells (OECs) and primary human osteoblasts (POBs) within a scaffold prior to implantation. In the present study, we aim to investigate whether Astragalus polysaccharide (APS) promotes angiogenesis or vascularization via the TLR4 signaling pathway in a co-culture of OECs and POBs. The co-cultures were treated with various concentrations of APS for 24 h and, subsequently, another 7 days, followed by CD31 staining and analysis of micro-vessel-formation areas using software. Additionally, APS (0.4 mg/ml for 24 h) was added to monocultures of OECs or POBs for evaluating proliferation, apoptosis, angiogenesis, osteogenesis, TLR4 signaling pathway, and inflammatory cytokine release. We found that APS promoted angiogenesis in the co-culture at the optimal concentration of 0.4 mg/ml. TLR4 activation by APS up-regulated the expression level of TLR4/MyD88 and enhanced angiogenesis and osteogenesis in monocultures of OECs and POBs. The levels of E-selectin adhesion molecules, three cytokines (IL-6, TNF-α, and IFN-γ), and VEGF and PDGF-BB, which can induce angiogenesis, increased significantly (p < .05) following APS treatment. Therefore, APS appears to promote angiogenesis and ossification in the co-culture system via the TLR4 signaling pathway. PRACTICAL APPLICATIONS: This study demonstrates that APS may promote angiogenesis and osteocyte proliferation in OEC and POB co-culture systems through the MyD88-dependent TLR4 signaling pathway. APS might represent a potential therapeutic strategy in tissue-engineered bone implantation for the treatment of large bone defects; additionally, it has the advantage of safety, as it exhibits low or no side effects. In the future, it is expected to be used in vitro for the construction of tissue-engineered bone and in vivo after implantation in patients with bone defects for promoting rapid vascularization and ossification of tissue-engineered bone and early fusion with the recipient's bone. In addition, as a food additive, Astragalus membranaceus can be used as a tonic material in patients recovering from a fracture for promoting blood-vessel formation at the fracture site and fracture recovery. Combining traditional Chinese medicine with tissue engineering can provide further strategies for promoting the development of regenerative medicine.


Asunto(s)
Células Endoteliales , Receptor Toll-Like 4 , Becaplermina/metabolismo , Selectina E/metabolismo , Células Endoteliales/metabolismo , Aditivos Alimentarios , Humanos , Interleucina-6/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Neovascularización Fisiológica , Polisacáridos/metabolismo , Polisacáridos/farmacología , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Sci Rep ; 10(1): 9850, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555231

RESUMEN

The central nervous system regulates the immune system through the secretion of hormones from the pituitary gland and other endocrine organs, while the peripheral nervous system (PNS) communicates with the immune system through local nerve-immune cell interactions, including sympathetic/parasympathetic (efferent) and sensory (afferent) innervation to lymphoid tissue/organs. However, the precise mechanisms of this bi-directional crosstalk of the PNS and immune system remain mysterious. To study this kind of bi-directional crosstalk, we performed immunofluorescent staining of neurofilament and confocal microscopy to reveal the distribution of nerve fibers and nerve-immune cell associations inside mouse spleen. Our study demonstrates (i) extensive nerve fibers in all splenic compartments including the splenic nodules, periarteriolar lymphoid sheath, marginal zones, trabeculae, and red pulp; (ii) close associations of nerve fibers with blood vessels (including central arteries, marginal sinuses, penicillar arterioles, and splenic sinuses); (iii) close associations of nerve fibers with various subsets of dendritic cells, macrophages (Mac1+ and F4/80+), and lymphocytes (B cells, T helper cells, and cytotoxic T cells). Our data concerning the extensive splenic innervation and nerve-immune cell communication will enrich our knowledge of the mechanisms through which the PNS affects the cellular- and humoral-mediated immune responses in healthy and infectious/non-infectious states.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Fibras Nerviosas/metabolismo , Neuronas/citología , Bazo/inmunología , Bazo/inervación , Coloración y Etiquetado , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Histol Histopathol ; 35(4): 371-383, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31486062

RESUMEN

Neural regulation of the function of the gastrointestinal tract (GIT) relies on a delicate balance of the two divisions of its nervous system, namely, the intrinsic and extrinsic divisions. The intrinsic innervation is provided by the enteric nervous system (ENS), whereas the extrinsic innervation includes sympathetic/parasympathetic nerve fibers and extrinsic sensory nerve fibers. In the present study, we used immunofluorescent staining of neurofilament-heavy (NF-H) to reveal the distribution of nerve fibers and their associations with immune cells inside mouse Peyer's patches (PP), an essential part of gut-associated lymphoid tissue (GALT). Our results demonstrate (1) the presence of an extensive meshwork of NF-H-immunoreactive presumptive nerve fibers in all PP compartments including the lymphoid nodules, interfollicular region, follicle-associated epithelium, and subepithelial dome; (2) close associations/contacts of nerve fibers with blood vessels including high endothelial venules, indicating neural control of blood flow and immune cell dynamics inside the PP; (3) close contacts between nerve fibers/endings and B/T cells and various subsets of dendritic cells ( e.g., B220⁻, B220⁺, CD4⁻, CD4⁺, CD8⁻, and CD8⁺). Our novel findings concerning PP innervation and nerve-immune-cell contacts in situ should facilitate our understanding of bi-directional communications between the PNS and GALT. Since the innervation of the gut, including PP, might be important in the pathogenesis and progression of some neurological, infectious, and autoimmune diseases, e.g., prion diseases and inflammatory bowel disease, better knowledge of PNS-immune system interactions in the GALT (including PP) should benefit the development of potential treatments for these diseases via neuroimmune manipulations.


Asunto(s)
Mucosa Intestinal/inmunología , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/inervación , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Eur J Histochem ; 63(4)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31631646

RESUMEN

The peripheral nervous system communicates specifically with the immune system via local interactions. These interactions include the "hardwiring" of sympathetic/parasympathetic (efferent) and sensory nerves (afferent) to primary (e.g., thymus and bone marrow) and secondary (e.g., lymph node, spleen, and gut-associated lymphoid tissue) lymphoid tissue/organs. To gain a better understanding of this bidirectional interaction/crosstalk between the two systems, we have investigated the distribution of nerve fibres and PNS-immune cell associations in situ in the mouse lymph node by using immunofluorescent staining and confocal microscopy/ three-dimensional reconstruction. Our results demonstrate i) the presence of extensive nerve fibres in all compartments (including B cell follicles) in the mouse lymph node; ii) close contacts/associations of nerve fibres with blood vessels (including high endothelial venules) and lymphatic vessels/sinuses; iii) close contacts/associations of nerve fibres with various subsets of dendritic cells (e.g., B220+CD11c+, CD4+CD11c+, CD8a+CD11c+, and Mac1+CD11c+), Mac1+ macrophages, and B/T lymphocytes. Our novel findings concerning the innervation and nerve-immune cell interactions inside the mouse lymph node should greatly facilitate our understanding of the effects that the peripheral nervous system has on cellular- and humoral-mediated immune responses or vice versa in health and disease.


Asunto(s)
Ganglios Linfáticos/inmunología , Ganglios Linfáticos/inervación , Animales , Anticuerpos Monoclonales/inmunología , Cricetulus , Células Dendríticas/inmunología , Técnica del Anticuerpo Fluorescente , Cabras , Masculino , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Fluorescente , Fibras Nerviosas/metabolismo , Conejos , Ratas , Linfocitos T Colaboradores-Inductores/inmunología
11.
Cell Tissue Res ; 378(2): 239-254, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31230166

RESUMEN

The central nervous system impacts the immune system mainly by regulating the systemic concentration of humoral substances, whereas the peripheral nervous system (PNS) communicates with the immune system specifically according to local "hardwiring" of sympathetic/parasympathetic (efferent) and sensory (afferent) nerves to the primary and secondary lymphoid tissue/organs (e.g., thymus spleen and lymph nodes). In the present study, we use immunofluorescent staining of neurofilament-heavy to reveal the distribution of nerve fibers and the nerve-immune cell neighborhood inside the mouse thymus. Our results demonstrate (a) the presence of an extensive meshwork of nerve fibers in all thymic compartments, including the capsule, subcapsular region, cortex, cortico-medullary junction and medulla; (b) close associations of nerve fibers with blood vessels (including the postcapillary venules), indicating the neural control of blood circulation and immune cell dynamics inside the thymus; (c) the close proximity of nerve fibers to various subsets of thymocytes (e.g., CD4+, CD8+ and CD4+CD8+), dendritic cells (e.g., B220+, CD4+, CD8+ and F4/80+), macrophages (Mac1+ and F4/80+) and B cells. Our novel findings concerning thymic innervation and the nerve-immune cell neighborhood in situ should facilitate the understanding of bi-directional communications between the PNS and primary lymphoid organs. Since the innervation of lymphoid organs, including the thymus, may play essential roles in the pathogenesis and progression of some neuroimmune, infectious and autoimmune diseases, better knowledge of PNS-immune system crosstalk should benefit the development of potential therapies for these diseases.


Asunto(s)
Células Dendríticas/ultraestructura , Fibras Nerviosas/ultraestructura , Neuronas/ultraestructura , Timo , Animales , Fluoroinmunoensayo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Timo/inmunología , Timo/inervación , Timo/ultraestructura
12.
Eur J Histochem ; 62(2): 2890, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29943953

RESUMEN

The nervous system and the immune system communicate extensively with each other in order to maintain homeostasis and to regulate the immune response. The peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions, including the "hardwiring" of sympathetic/parasympathetic (efferent) and sensory nerves (afferent) to lymphoid tissue and organs. To reveal this type of bidirectional neuroimmune interaction at the microscopic level, we used immunofluorescent staining of glial fibrillary acidic protein (GFAP) coupled with confocal microscopy/3D reconstruction to reveal the distribution of non-myelinating Schwann cells (NMSCs) and their interactions with immune cells inside mouse spleen. Our results demonstrate i) the presence of  an extensive network of  NMSC processes in all splenic compartments including the splenic nodules, periarteriolar lymphoid sheath (PALS), marginal zone,  trabecula, and red pulp; ii) the close association of  NMSC processes with blood vessels (including central artries and their branches, marginal sinuses, penicillar arterioles and splenic sinuses); iii) the close "synapse-like" interaction/association of NMSC processes with various subsets of dendritic cells (DCs; e.g., CD4+CD11c+ DCs, B220+CD11c+ DCs, and F4/80+ CD11c+ DCs), macrophages (F4/80+), and lymphocytes (B cells, CD4+ T helper cells). Our novel findings concerning the distribution of NMSCs and NMSC-leukocytes interactions inside mouse spleen should improve our understanding of the mechanisms through which the PNS affects cellular- and humoral-mediated immune responses in a variety of health conditions and infectious/non-infectious diseases.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Leucocitos/citología , Células de Schwann/citología , Bazo/citología , Coloración y Etiquetado/métodos , Animales , Biomarcadores/metabolismo , Femenino , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células de Schwann/metabolismo , Bazo/metabolismo
13.
J Histochem Cytochem ; 66(11): 775-785, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29775115

RESUMEN

The thymus is innervated by sympathetic/parasympathetic nerve fibers from the peripheral nervous system (PNS), suggesting a neural regulation of thymic function including T-cell development. Despite some published studies, data on the innervation and nerve-immune interaction inside the thymus remain limited. In the present study, we used immunofluorescent staining of glial fibrillary acidic protein (GFAP) coupled with confocal microscopy/three-dimensional (3D) reconstruction to reveal the distribution of non-myelinating Schwann cells (NMSC) and their interactions with immune cells inside mouse thymus. Our results demonstrate (1) the presence of an extensive network of NMSC processes in all compartments of the thymus including the capsule, subcapsular region, cortex, cortico-medullary junction, and medulla; (2) close associations/interactions of NMSC processes with blood vessels, indicating the neural control of blood flow inside the thymus; (3) the close "synapse-like" association of NMSC processes with various subsets of dendritic cells (DC; e.g., B220+ DCs, CD4+ DCs, and CD8+ DCs), and lymphocytes (B cells, CD4+/CD8+ thymocytes). Our novel findings concerning the distribution of NMSCs and the associations of NMSCs and immune cells inside mouse thymus should help us understand the anatomical basis and the mechanisms through which the PNS affects T-cell development and thymic endocrine function in health and disease.


Asunto(s)
Células Dendríticas/citología , Técnica del Anticuerpo Fluorescente/métodos , Linfocitos/citología , Microscopía Confocal/métodos , Células de Schwann/citología , Timo/citología , Animales , Comunicación Celular , Células Dendríticas/ultraestructura , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Linfocitos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Células de Schwann/ultraestructura , Coloración y Etiquetado/métodos , Timo/inervación , Timo/ultraestructura
14.
Eur J Histochem ; 61(3): 2827, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29046050

RESUMEN

The central nervous system (CNS) influences the immune system in a general fashion by regulating the systemic concentration of humoral substances, whereas the autonomic nervous system communicates specifically with the immune system according to local interactions. Data concerning the mechanisms of this bidirectional crosstalk of the peripheral nervous system (PNS) and immune system remain limited. To gain a better understanding of local interactions of the PNS and immune system, we have used immunofluorescent staining of glial fibrillary acidic protein (GFAP), coupled with confocal microscopy, to investigate the non-myelinating Schwann cell (NMSC)-immune cell interactions in mouse mesenteric lymph nodes. Our results demonstrate i) the presence of extensive NMSC processes and even of cell bodies in each compartment of the mouse mesenteric lymph node; ii) close associations/interactions of NMSC processes with blood vessels (including high endothelial venules) and the lymphatic vessel/sinus; iii) close contacts/associations of NMSC processes with various subsets of dendritic cells (such as CD4+CD11c+, CD8+CD11c+ dendritic cells), macrophages (F4/80+ and CD11b+ macrophages), and lymphocytes. Our novel findings concerning the distribution of NMSCs and NMSC-immune cell interactions inside the mouse lymph node should help to elucidate the mechanisms through which the PNS affects cellular- and humoral-mediated immune responses or vice versa in health and disease.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/química , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo , Células de Schwann/citología , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Fibras Nerviosas Amielínicas/metabolismo , Células de Schwann/metabolismo
15.
J Transl Med ; 13: 205, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26123101

RESUMEN

BACKGROUND: The failure in standard triple therapy has recently increased to high levels in China, primarily because of insufficient patient compliance, antimicrobial resistance, and high costs. Effective prevention and eradication of Helicobacter pylori (H. pylori) by artificial passive immunization with orally administered bovine antibodies in the milk has been demonstrated in many animal studies, but the clinical studies that are available have shown no H. pylori eradication. This study was to evaluate the efficacy and safety of orally administered bovine anti-H. pylori antibodies for the clearance of H. pylori infecting O blood group subpopulations. METHODS: Two local epidemic H. pylori strains that were prevalent locally were screened and then used to immunize dairy cows. After confirmation of the presence of anti-H. pylori polyclonal antibodies in the milk by enzyme-linked immunosorbent assay, the milk was subsequently defatted and processed into sterile milk by pasteurization. This study was designed as a double-blind placebo-controlled randomized clinical trial. Our 61 H. pylori-infected O blood group subjects were assigned to two groups; 31 subjects were treated with bovine milk containing antibodies and 30 subjects with the placebo. The medication-based study was continued for 28 days. Subjects were followed up for 56 days. The effect was assessed by the C-14 urea breath test (UBT). SPSS 17.0 software for Windows was used to analyze the data. RESULTS: Of the 61 subjects enrolled, 58 completed the protocol. One volunteer in the antibodies group and two volunteers in the control group dropped out. Of the 30 antibody-treated subjects, 13 became UBT negative, whereas none of the 30 of the placebo-treated subjects became UBT negative after the medication. Of 13 UBT negative patients, 3 became positive again at the end of the follow-up. Both intention to treat and per-protocol analysis indicated a significant difference in the clearance rate of infected patients between the groups treated with bovine antibody-containing milk and the placebo (P = 0.001, P < 0.05) and no significant difference in adverse effects (P > 0.05 all). CONCLUSIONS: Bovine antibody-based oral immunotherapy appears to be safe and has a significant clearance effect on intragastric H. pylori that infects O blood group adults. TRIAL REGISTRATION: ChiCTR-TRC-14005212.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/inmunología , Anticuerpos Antibacterianos/inmunología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/inmunología , Leche/inmunología , Adulto , Anciano , Animales , Anticuerpos Antibacterianos/efectos adversos , Bovinos , Método Doble Ciego , Humanos , Masculino , Persona de Mediana Edad , Leche/efectos adversos , Proyectos Piloto , Encuestas y Cuestionarios , Adulto Joven
16.
Zhongguo Fei Ai Za Zhi ; 5(2): 112-4, 2002 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-21320402

RESUMEN

BACKGROUND: To study the correlation among the number of tumor-infiltrating dendritic cells (TIDC) in cancer tissues and biological behavior and prognosis in lung cancer patients. METHODS: S-100 protein expression level was determined in 39 patients with lung cancer by immunohistochemistry technique. The number of S-100 + TIDC and DNA ploidy were measured by means of flow cytometry. RESULTS: The rate of positive S-100 protein expression was 100% in 39 patients, S-100 + cells showed typical morphology of dendritic cells. The percentage of S-100 +TIDC in patients with heteroploid (21.81%±8.18%) was significantly higher than those with diploid (16.03%±4.75%) (P=0.006). There was no statistical difference between lymph node metastasis group (20.43%±7.74%) and no lymph node metastasis group ( 19.41% ±7.76%), between tumor size greater than 3cm group ( 20.90% ±8.65%) and less than 3cm group ( 19.70% ±7.61%), between non-small cell lung cancer group (19.48%±7.98%) and small cell lung cancer group (21.74%±6.17%). No correlation was found between survival time ( 1 year , 1-3 years, greater than 3 years, respectively) and percentage of S-100 +TIDC (21.96%±8.05%, 19.47%±6.18%, 19.14%±8.76%, respectively). CONCLUSIONS: The number of TIDC should not be chosen as an independent prognostic criterion in human lung cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...