Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MAGMA ; 34(1): 49-56, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32910316

RESUMEN

OBJECTIVES: To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. METHODS: Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). RESULTS: The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. DISCUSSION: Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time,  using hyperpolarized DHAc.


Asunto(s)
Dihidroxiacetona/química , Animales , Isótopos de Carbono , Gluconeogénesis , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ratones , Protones
2.
EJNMMI Res ; 10(1): 151, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33296043

RESUMEN

INTRODUCTION: Trialing novel cancer therapies in the clinic would benefit from imaging agents that can detect early evidence of treatment response. The timing, extent and distribution of cell death in tumors following treatment can give an indication of outcome. We describe here an 18F-labeled derivative of a phosphatidylserine-binding protein, the C2A domain of Synaptotagmin-I (C2Am), for imaging tumor cell death in vivo using PET. METHODS: A one-pot, two-step automated synthesis of N-(5-[18F]fluoropentyl)maleimide (60 min synthesis time, > 98% radiochemical purity) has been developed, which was used to label the single cysteine residue in C2Am within 30 min at room temperature. Binding of 18F-C2Am to apoptotic and necrotic tumor cells was assessed in vitro, and also in vivo, by dynamic PET and biodistribution measurements in mice bearing human tumor xenografts treated with a TRAILR2 agonist or with conventional chemotherapy. C2Am detection of tumor cell death was validated by correlation of probe binding with histological markers of cell death in tumor sections obtained immediately after imaging. RESULTS: 18F-C2Am showed a favorable biodistribution profile, with predominantly renal clearance and minimal retention in spleen, liver, small intestine, bone and kidney, at 2 h following probe administration. 18F-C2Am generated tumor-to-muscle (T/m) ratios of 6.1 ± 2.1 and 10.7 ± 2.4 within 2 h of probe administration in colorectal and breast tumor models, respectively, following treatment with the TRAILR2 agonist. The levels of cell death (CC3 positivity) following treatment were 12.9-58.8% and 11.3-79.7% in the breast and colorectal xenografts, respectively. Overall, a 20% increase in CC3 positivity generated a one unit increase in the post/pre-treatment tumor contrast. Significant correlations were found between tracer uptake post-treatment, at 2 h post-probe administration, and histological markers of cell death (CC3: Pearson R = 0.733, P = 0.0005; TUNEL: Pearson R = 0.532, P = 0.023). CONCLUSION: The rapid clearance of 18F-C2Am from the blood pool and low kidney retention allowed the spatial distribution of cell death in a tumor to be imaged during the course of therapy, providing a rapid assessment of tumor treatment response. 18F-C2Am has the potential to be used in the clinic to assess early treatment response in tumors.

3.
Cancer Cell ; 38(4): 516-533.e9, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32976773

RESUMEN

PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Proteína Forkhead Box M1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Proteína Forkhead Box M1/genética , Fulvestrant/administración & dosificación , Humanos , Imidazoles/administración & dosificación , Células MCF-7 , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Oxazepinas/administración & dosificación , Receptores de Estrógenos/metabolismo , Tamoxifeno/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
5.
Radiology ; 294(2): 289-296, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31821119

RESUMEN

Background Tumor cells frequently show high rates of aerobic glycolysis, which provides the glycolytic intermediates needed for the increased biosynthetic demands of rapid cell growth and proliferation. Existing clinical methods (fluorodeoxyglucose PET and carbon 13 MRI and spectroscopy) do not allow quantitative images of glycolytic flux. Purpose To evaluate the use of deuterium (hydrogen 2 [2H]) MR spectroscopic imaging for quantitative mapping of tumor glycolytic flux and to assess response to chemotherapy. Materials and Methods A fast three-dimensional 2H MR spectroscopic imaging pulse sequence, with a time resolution of 10 minutes, was used to image glycolytic flux in a murine tumor model after bolus injection of D-[6,6'-2H2]glucose before and 48 hours after treatment with a chemotherapeutic agent. Tumor lactate labeling, expressed as the lactate-to-water and lactate-to-glucose signal ratios, was also assessed in localized 2H MR spectra. Statistical significance was tested with a one-sided paired t test. Results 2H MR spectroscopic imaging showed heterogeneity in glycolytic flux across the tumor and an early decrease in flux following treatment with a chemotherapeutic drug. Spectroscopy measurements on five animals showed a decrease in the lactate-to-water signal ratio, from 0.33 ± 0.10 to 0.089 ± 0.039 (P = .005), and in the lactate-to-glucose ratio, from 0.27 ± 0.12 to 0.12 ± 0.06 (P = .04), following drug treatment. Conclusion Rapidly acquired deuterium (hydrogen 2) MR spectroscopic images can provide quantitative and spatially resolved measurements of glycolytic flux in tumors that can be used to assess treatment response. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Ouwerkerk in this issue.


Asunto(s)
Glucólisis , Imagenología Tridimensional/métodos , Linfoma/diagnóstico por imagen , Espectroscopía de Resonancia Magnética/métodos , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Deuterio , Modelos Animales de Enfermedad , Linfoma/tratamiento farmacológico , Ratones , Tiempo
6.
Cancer Res ; 79(14): 3557-3569, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31088837

RESUMEN

Metabolic imaging has been widely used to measure the early responses of tumors to treatment. Here, we assess the abilities of PET measurement of [18F]FDG uptake and MRI measurement of hyperpolarized [1-13C]pyruvate metabolism to detect early changes in glycolysis following treatment-induced cell death in human colorectal (Colo205) and breast adenocarcinoma (MDA-MB-231) xenografts in mice. A TRAIL agonist that binds to human but not mouse cells induced tumor-selective cell death. Tumor glycolysis was assessed by injecting [1,6-13C2]glucose and measuring 13C-labeled metabolites in tumor extracts. Injection of hyperpolarized [1-13C]pyruvate induced rapid reduction in lactate labeling. This decrease, which correlated with an increase in histologic markers of cell death and preceded decrease in tumor volume, reflected reduced flux from glucose to lactate and decreased lactate concentration. However, [18F]FDG uptake and phosphorylation were maintained following treatment, which has been attributed previously to increased [18F]FDG uptake by infiltrating immune cells. Quantification of [18F]FDG uptake in flow-sorted tumor and immune cells from disaggregated tumors identified CD11b+/CD45+ macrophages as the most [18F]FDG-avid cell type present, yet they represented <5% of the cells present in the tumors and could not explain the failure of [18F]FDG-PET to detect treatment response. MRI measurement of hyperpolarized [1-13C]pyruvate metabolism is therefore a more sensitive marker of the early decreases in glycolytic flux that occur following cell death than PET measurements of [18F]FDG uptake. SIGNIFICANCE: These findings demonstrate superior sensitivity of MRI measurement of hyperpolarized [1-13C]pyruvate metabolism versus PET measurement of 18F-FDG uptake for detecting early changes in glycolysis following treatment-induced tumor cell death.


Asunto(s)
Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Animales , Antineoplásicos/farmacología , Isótopos de Carbono , Muerte Celular/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Glucólisis/efectos de los fármacos , Xenoinjertos , Humanos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Ácido Pirúvico/metabolismo , Radiofármacos/farmacocinética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
7.
Cancer Res ; 78(18): 5408-5418, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30054337

RESUMEN

13C MRI of hyperpolarized [1-13C]pyruvate metabolism has been used in oncology to detect disease, investigate disease progression, and monitor response to treatment with a view to guiding treatment in individual patients. This technique has translated to the clinic with initial studies in prostate cancer. Here, we use the technique to investigate its potential uses in patients with glioblastoma (GB). We assessed the metabolism of hyperpolarized [1-13C]pyruvate in an orthotopically implanted cell line model (U87) of GB and in patient-derived tumors, where these were produced by orthotopic implantation of cells derived from different patients. Lactate labeling was higher in the U87 tumor when compared with patient-derived tumors, which displayed intertumoral heterogeneity, reflecting the intra- and intertumoral heterogeneity in the patients' tumors from which they were derived. Labeling in some patient-derived tumors could be observed before their appearance in morphologic images, whereas in other tumors it was not significantly greater than the surrounding brain. Increased lactate labeling in tumors correlated with c-Myc-driven expression of hexokinase 2, lactate dehydrogenase A, and the monocarboxylate transporters and was accompanied by increased radioresistance. Because c-Myc expression correlates with glioma grade, this study demonstrates that imaging with hyperpolarized [1-13C]pyruvate could be used clinically with patients with GB to determine disease prognosis, to detect early responses to drugs that modulate c-Myc expression, and to select tumors, and regions of tumors for increased radiotherapy dose.Significance: Metabolic imaging with hyperpolarized [1-13C]pyruvate detects low levels of c-Myc-driven glycolysis in patient-derived glioblastoma models, which, when translated to the clinic, could be used to detect occult disease, determine disease prognosis, and target radiotherapy. Cancer Res; 78(18); 5408-18. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Exoma , Femenino , Glioblastoma/diagnóstico por imagen , Glucólisis , Xenoinjertos , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Trasplante de Neoplasias , Pronóstico , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Desnudas
8.
NMR Biomed ; 31(4): e3892, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29380927

RESUMEN

Arthritic conditions are a major source of chronic pain. Furthering our understanding of disease mechanisms creates the opportunity to develop more targeted therapeutics. In rheumatoid arthritis (RA), measurements of pH in human synovial fluid suggest that acidosis occurs, but that this is highly variable between individuals. Here we sought to determine if tissue acidosis occurs in a widely used rodent arthritis model: complete Freund's adjuvant (CFA)-induced inflammation. CFA robustly evoked paw and ankle swelling, concomitant with worsening clinical scores over time. We used magnetic resonance spectroscopic imaging of hyperpolarized [1-13 C]pyruvate metabolism to demonstrate that CFA induces an increase in the lactate-to-pyruvate ratio. This increase is indicative of enhanced glycolysis and an increased lactate concentration, as has been observed in the synovial fluid from RA patients, and which was correlated with acidosis. We also measured the 13 CO2 /H13 CO3- ratio, in animals injected with hyperpolarized H13 CO3- , to estimate extracellular tissue pH and showed that despite the apparent increase in glycolytic activity in CFA-induced inflammation there was no accompanying decrease in extracellular pH. The pH was 7.23 ± 0.06 in control paws and 7.32 ± 0.09 in inflamed paws. These results could explain why mice lacking acid-sensing ion channel subunits 1, 2 and 3 do not display any changes in mechanical or thermal hyperalgesia in CFA-induced inflammation.


Asunto(s)
Acidosis/patología , Bicarbonatos/metabolismo , Isótopos de Carbono/química , Inflamación/patología , Articulaciones/patología , Ácido Láctico/metabolismo , Animales , Dióxido de Carbono/química , Modelos Animales de Enfermedad , Femenino , Adyuvante de Freund , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL
9.
NMR Biomed ; 31(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29215773

RESUMEN

Single-shot echo planar imaging (EPI), which allows an image to be acquired using a single excitation pulse, is used widely for imaging the metabolism of hyperpolarized 13 C-labelled metabolites in vivo as the technique is rapid and minimizes the depletion of the hyperpolarized signal. However, EPI suffers from Nyquist ghosting, which normally is corrected for by acquiring a reference scan. In a dynamic acquisition of a series of images, this results in the sacrifice of a time point if the reference scan involves a full readout train with no phase encoding. This time penalty is negligible if an integrated navigator echo is used, but at the cost of a lower signal-to-noise ratio (SNR) as a result of prolonged T2 * decay. We describe here a workflow for hyperpolarized 13 C EPI that requires no reference scan. This involves the selection of a ghost-containing background from a 13 C image of a single metabolite at a single time point, the identification of phase correction coefficients that minimize signal in the selected area, and the application of these coefficients to images acquired at all time points and from all metabolites. The workflow was compared in phantom experiments with phase correction using a 13 C reference scan, and yielded similar results in situations with a regular field of view (FOV), a restricted FOV and where there were multiple signal sources. When compared with alternative phase correction methods, the workflow showed an SNR benefit relative to integrated 13 C reference echoes (>15%) or better ghost removal relative to a 1 H reference scan. The residual ghosting in a slightly de-shimmed B0 field was 1.6% using the proposed workflow and 3.8% using a 1 H reference scan. The workflow was implemented with a series of dynamically acquired hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate images in vivo, resulting in images with no observable ghosting and which were quantitatively similar to images corrected using a 13 C reference scan.


Asunto(s)
Isótopos de Carbono/metabolismo , Imagen Eco-Planar , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Animales , Femenino , Procesamiento de Imagen Asistido por Computador , Ratones Endogámicos C57BL , Fantasmas de Imagen , Estándares de Referencia , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
10.
Clin Cancer Res ; 23(22): 6893-6903, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821560

RESUMEN

Purpose: The development of new treatments and their deployment in the clinic may be assisted by imaging methods that allow an early assessment of treatment response in individual patients. The C2A domain of Synaptotagmin-I (C2Am), which binds to the phosphatidylserine (PS) exposed by apoptotic and necrotic cells, has been developed as an imaging probe for detecting cell death. Multispectral optoacoustic tomography (MSOT) is a real-time and clinically applicable imaging modality that was used here with a near infrared (NIR) fluorophore-labeled C2Am to image tumor cell death in mice treated with a TNF-related apoptosis-inducing ligand receptor 2 (TRAILR2) agonist and with 5-fluorouracil (5-FU).Experimental Design: C2Am was labeled with a NIR fluorophore and injected intravenously into mice bearing human colorectal TRAIL-sensitive Colo205 and TRAIL-resistant HT-29 xenografts that had been treated with a potent agonist of TRAILR2 and in Colo205 tumors treated with 5-FU.Results: Three-dimensional (3D) MSOT images of probe distribution showed development of tumor contrast within 3 hours of probe administration and a signal-to-background ratio in regions containing dead cells of >10 after 24 hours. A site-directed mutant of C2Am that is inactive in PS binding showed negligible binding. Tumor retention of the active probe was strongly correlated (R2 = 0.97, P value < 0.01) with a marker of apoptotic cell death measured in histologic sections obtained post mortem.Conclusions: The rapid development of relatively high levels of contrast suggests that NIR fluorophore-labeled C2Am could be a useful optoacoustic imaging probe for detecting early therapy-induced tumor cell death in the clinic. Clin Cancer Res; 23(22); 6893-903. ©2017 AACR.


Asunto(s)
Muerte Celular , Imagen Molecular , Técnicas Fotoacústicas , Tomografía , Animales , Biomarcadores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Colorantes Fluorescentes , Xenoinjertos , Humanos , Ratones , Microscopía Fluorescente , Imagen Molecular/métodos , Tomografía/métodos
11.
J Nucl Med ; 58(6): 881-887, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28209913

RESUMEN

Cell death is an important target for imaging the early response of tumors to treatment. We describe here the validation of a phosphatidylserine-binding agent for detecting tumor cell death in vivo based on the C2A domain of synaptotagmin-I. Methods: The capability of near-infrared fluorophore-labeled and 99mTc- and 111In-labeled derivatives of C2Am for imaging tumor cell death, using planar near-infrared fluorescence imaging and SPECT, respectively, was evaluated in implanted and genetically engineered mouse models of lymphoma and in a human colorectal xenograft. Results: The fluorophore-labeled C2Am derivative showed predominantly renal clearance and high specificity and sensitivity for detecting low levels of tumor cell death (2%-5%). There was a significant correlation (R > 0.9, P < 0.05) between fluorescently labeled C2Am binding and histologic markers of cell death, including cleaved caspase-3, whereas there was no such correlation with a site-directed mutant of C2Am (iC2Am) that does not bind phosphatidylserine. 99mTc-C2Am and 111In-C2Am also showed favorable biodistribution profiles, with predominantly renal clearance and low nonspecific retention in the liver and spleen at 24 h after probe administration. 99mTc-C2Am and 111In-C2Am generated tumor-to-muscle ratios in drug-treated tumors of 4.3× and 2.2×, respectively, at 2 h and 7.3× and 4.1×, respectively, at 24 h after administration. Conclusion: Given the favorable biodistribution profile of 99mTc- and 111In-labeled C2Am, and their ability to produce rapid and cell death-specific image contrast, these agents have potential for clinical translation.


Asunto(s)
Apoptosis , Imagen Molecular/métodos , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Tomografía de Emisión de Positrones/métodos , Sinaptotagmina I/farmacocinética , Animales , Biomarcadores/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias Experimentales/diagnóstico por imagen , Dominios Proteicos , Radiofármacos/farmacocinética , Sinaptotagmina I/química , Distribución Tisular
12.
Magn Reson Med ; 77(2): 740-752, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26916384

RESUMEN

PURPOSE: Metabolic imaging with hyperpolarized 13 C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstrate its capability to generate 13 C MR images in tumor-bearing mice injected with hyperpolarized [1-13 C]pyruvate. METHODS: The pulse sequence acquires a stack-of-spirals at two spin echoes after a single excitation pulse and encodes the kz-dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral-spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13 C-labeled metabolites. RESULTS: A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3 × 2 s was achieved in tumor images of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate acquired in vivo. Higher resolution in the z-direction, with a different k-space trajectory, was demonstrated in measurements on a thermally polarized [1-13 C]lactate phantom. CONCLUSION: The pulse sequence is capable of imaging hyperpolarized 13 C-labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740-752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Isótopos de Carbono/metabolismo , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Animales , Isótopos de Carbono/química , Femenino , Ácido Láctico/química , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/diagnóstico por imagen , Fantasmas de Imagen , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo
13.
Nat Biotechnol ; 35(1): 75-80, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27918546

RESUMEN

Non-invasive imaging of gene expression can be used to track implanted cells in vivo but often requires the addition of an exogenous contrast agent that may have limited tissue access. We show that the urea transporter (UT-B) can be used as a gene reporter, where reporter expression is detected using 1H MRI measurements of UT-B-mediated increases in plasma membrane water exchange. HEK cells transfected with the reporter showed an increased apparent water exchange rate (AXR), which increased in line with UT-B expression. AXR values measured in vivo, in UT-B-expressing HEK cell xenografts, were significantly higher (about twofold, P < 0.0001), compared with non-expressing controls. Fluorescence imaging of a red fluorescent protein (mStrawberry), co-expressed with UT-B showed that UT-B expression correlated in a linear fashion with AXR. Transduction of rat brain cells in situ with a lentiviral vector expressing UT-B resulted in about a twofold increase in AXR at the site of virus injection.


Asunto(s)
Agua Corporal/metabolismo , Membrana Celular/metabolismo , Genes Reporteros/genética , Imagen por Resonancia Magnética/métodos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Imagen Molecular/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Transportadores de Urea
14.
J Biol Chem ; 292(5): 1737-1748, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994059

RESUMEN

Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.


Asunto(s)
Ácido Deshidroascórbico/metabolismo , NADP/metabolismo , Neoplasias/metabolismo , Estrés Oxidativo , Animales , Isótopos de Carbono , Línea Celular Tumoral , Humanos , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Ratones
15.
Angew Chem Weinheim Bergstr Ger ; 128(4): 1308-1312, 2016 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-27346899

RESUMEN

Glycosylation is a ubiquitous post-translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell-cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium-based bioorthogonal MRI probe. Significant N-azidoacetylgalactosamine dependent T1 contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10-fold). This approach has the potential to enable the rapid and non-invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.

16.
Magn Reson Med ; 76(2): 391-401, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26388418

RESUMEN

PURPOSE: Dissolution dynamic nuclear polarization can increase the sensitivity of the (13) C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize (13) C-labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. METHODS: Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using (13) C MRS measurements of the conversion of hyperpolarized [1-(13) C] pyruvate to H(13) CO3-. RESULTS: Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two-fold increase in the H(13) CO3-/[1-(13) C] pyruvate signal ratio following intravenous injection of hyperpolarized [1-(13) C] pyruvate. CONCLUSION: We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized (13) C MRS. Magn Reson Med 76:391-401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Piruvato Descarboxilasa/metabolismo , Ácido Pirúvico/farmacocinética , Proteínas Recombinantes/metabolismo , Zymomonas/enzimología , Animales , Activación Enzimática , Femenino , Genes Reporteros/fisiología , Células HEK293 , Humanos , Ratones , Ratones SCID , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular , Zymomonas/genética
17.
Angew Chem Int Ed Engl ; 55(4): 1286-90, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26633082

RESUMEN

Glycosylation is a ubiquitous post-translational modification, present in over 50% of the proteins in the human genome, with important roles in cell-cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases, including cancer. We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium-based bioorthogonal MRI probe. Significant N-azidoacetylgalactosamine dependent T1  contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10-fold). This approach has the potential to enable the rapid and non-invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.


Asunto(s)
Carbohidratos/química , Imagen por Resonancia Magnética/métodos , Animales , Gadolinio/farmacocinética , Glicosilación , Ratones , Sondas Moleculares , Distribución Tisular
18.
Cancer Res ; 75(19): 4109-18, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249175

RESUMEN

Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH.


Asunto(s)
Antígenos de Neoplasias/fisiología , Anhidrasas Carbónicas/fisiología , Neoplasias Colorrectales/metabolismo , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Proteínas de Neoplasias/fisiología , Animales , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/genética , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Anhidrasa Carbónica IX , Anhidrasas Carbónicas/análisis , Anhidrasas Carbónicas/genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/análisis , Proteínas Recombinantes de Fusión/análisis , Microambiente Tumoral
19.
Magn Reson Med ; 74(6): 1543-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25522215

RESUMEN

PURPOSE: A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells.


Asunto(s)
Glucosa/farmacocinética , Glucólisis , Neoplasias Experimentales/metabolismo , Vía de Pentosa Fosfato , Uranio/farmacocinética , Animales , Línea Celular Tumoral , Femenino , Espectroscopía de Resonancia Magnética/métodos , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos C57BL , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Sensibilidad y Especificidad
20.
J Natl Cancer Inst ; 106(5)2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24777112

RESUMEN

BACKGROUND: Many prognostic biomarkers have been proposed recently. However, there is a lack of therapeutic strategies exploiting novel prognostic biomarkers. We aimed to propose therapeutic options in patients with overexpression of TRIM44, a recently identified prognostic gene. METHODS: Genomic and transcriptomic data of epithelial cancers (n = 1932), breast cancers (BCs; n = 1980) and esophago-gastric cancers (EGCs; n = 163) were used to identify genomic aberrations driving TRIM44 overexpression. The driver gene status of TRIM44 was determined using a small interfering RNA (siRNA) screen of the 11p13 amplicon. Integrative analysis was applied across multiple datasets to identify pathway activation and potential therapeutic strategies. Validation of the in silico findings were performed using in vitro assays, xenografts, and patient samples (n = 160). RESULTS: TRIM44 overexpression results from genomic amplification in 16.1% of epithelial cancers, including 8.1% of EGCs and 6.1% of BCs. This was confirmed using fluorescent in situ hybridization. The siRNA screen confirmed TRIM44 to be a driver of the amplicon. In silico analysis revealed an association between TRIM44 and mTOR signalling, supported by a decrease in mTOR signalling after siRNA knockdown of TRIM44 in cell lines and colocalization of TRIM44 and p-mTOR in patient samples. In vitro inhibition studies using an mTOR inhibitor (everolimus) decreased cell viability in two TRIM44-amplified cells lines by 88% and 70% compared with 35% in the control cell line. These findings were recapitulated in xenograft models. CONCLUSIONS: Genomic amplification drives TRIM44 overexpression in EGCs and BCs. Targeting the mTOR pathway provides a potential therapeutic option for TRIM44-amplified tumors.


Asunto(s)
Proteínas Portadoras/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Portadoras/biosíntesis , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Femenino , Amplificación de Genes , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos BALB C , Terapia Molecular Dirigida , Estadificación de Neoplasias , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Motivos Tripartitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...