Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893902

RESUMEN

In this study, a top-down approach was employed for the fabrication of flame-retardant wood aerogels. The process involved the removal of lignin and the removal of hemicellulose utilizing NaOH concomitantly with the incorporation of ZnO and urea. Subsequently, an in situ reaction with boric acid was conducted to prepare flame-retardant wood aerogels. The morphology, chemical composition, thermal stability, and flame retardancy of the samples were studied. The results show that the NaOH treatment transformed the wood into a layered structure, and flame-retardant particles were uniformly distributed on the surface of the aerogel. The peak heat release rate (PHRR) and total heat release (THR) of the flame-retardant aerogel were significantly reduced compared with the control samples. Meanwhile, its vertical burning test (UL-94) rating reached the V-0 level, and the Limiting Oxygen Index (LOI) could exceed 90%. The flame-retardant wood aerogel exhibited excellent flame retardancy and self-extinguishing properties.

2.
Acta Biomater ; 180: 323-336, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38561075

RESUMEN

Peripheral nerve injuries (PNIs) can cause neuropathies and significantly affect the patient's quality of life. Autograft transplantation is the gold standard for conventional treatment; however, its application is limited by nerve unavailability, size mismatch, and local tissue adhesion. Tissue engineering, such as nerve guidance conduits, is an alternative and promising strategy to guide nerve regeneration for peripheral nerve repair; however, only a few conduits could reach the high repair efficiency of autografts. The healing process of PNI is frequently accompanied by not only axonal and myelination regeneration but also angiogenesis, which initializes nerve regeneration through vascular endothelial growth factor A (VEGF-A). In this study, a composite nerve conduit with a poly (lactic-co-glycolic acid) (PLGA) hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with VEGF-A transfected Schwann cells (SCs) as the inner layer was established to evaluate its promising ability for peripheral nerve repair. A rat model of peripheral nerve defect was used to examine the efficiency of PLGA/GelMA-SC (VA) conduits, whereas autograft, PLGA, PLGA/GelMA, and PLGA/GelMA-SC (NC) were used as controls. VEGF-A-transfected SCs can provide a stable source for VEGF-A secretion. Furthermore, encapsulation in GelMA cannot only promote proliferation and tube formation of human umbilical vein endothelial cells but also enhance dorsal root ganglia and neuronal cell extension. Previous animal studies have demonstrated that the regenerative effects of PLGA/GelMA-SC (VA) nerve conduit were similar to those of autografts and much better than those of other conduits. These findings indicate that combination of VEGF-A-overexpressing SCs and PLGA/GelMA conduit-guided peripheral nerve repair provides a promising method that enhances angiogenesis and regeneration during nerve repair. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits shows promise for peripheral nerve repair, while achieving the repair efficiency of autografts remains a challenge. In this study, a composite nerve conduit with a PLGA hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with vascular endothelial growth factor A (VEGF-A)-transfected Schwann cells (SCs) as the inner layer was established to evaluate its potential ability for peripheral nerve repair. This approach preserves growth factor bioactivity and enhances material properties. GelMA insertion promotes Schwann cell proliferation and morphology extension. Moreover, transfected SCs serve as a stable VEGF-A source and fostering angiogenesis. This study offers a method preserving growth factor efficacy and safeguarding SCs, providing a comprehensive solution for enhanced angiogenesis and nerve regeneration.


Asunto(s)
Neovascularización Fisiológica , Regeneración Nerviosa , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Células de Schwann , Factor A de Crecimiento Endotelial Vascular , Células de Schwann/metabolismo , Células de Schwann/citología , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Regeneración Nerviosa/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Neovascularización Fisiológica/efectos de los fármacos , Ratas , Transfección , Gelatina/química , Masculino , Andamios del Tejido/química , Humanos , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/patología , Angiogénesis
3.
Artículo en Inglés | MEDLINE | ID: mdl-37889514

RESUMEN

Arthritis is a joint disorder that potentially causes permanent joint damage and eventual disability without effective treatment. Clinical detection methods, including in vitro blood tests and anatomical imaging, still have limitations in achieving real-time in situ early detection of arthritis. In this work, a dual-channel luminescence nanoprobe (AGNPs-Cy7) is reported, which combines a cyanine dye and a photochemical reaction-based afterglow system for real-time in vivo imaging of arthritis. AGNPs-Cy7 simultaneously detect hypochlorous acid (HOCl) and temperature, two important indicators associated with the early development of arthritis, by monitoring the respective changes in independent ratiometric fluorescence and afterglow lifetime signals. The anti-interference properties of both the ratiometric fluorescence signal and afterglow lifetime signal enhance sensing accuracy compared to the single luminescence intensity. The developed probe successfully reveals the simultaneous increase in HOCl concentration and temperature in an arthritis mouse model.

4.
ACS Appl Mater Interfaces ; 15(24): 29321-29329, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289002

RESUMEN

Afterglow luminescence has garnered significant attention due to its excellent optical properties. Currently, most afterglow phenomena are produced by persistent luminescence following cessation of the excitation light. However, it remains a challenge to control the afterglow luminescence process due to rapid photophysical or photochemical changes. Here, we develop a new strategy to control the afterglow luminescence process by introducing pyridones as singlet oxygen (1O2) storage reagents (OSRs), where 1O2 can be stored in covalent bonds at relatively low temperatures and released upon heating. The afterglow luminescence properties, including afterglow intensity, decay rate, and decay process, can be tuned flexibly by regulating temperature or OSR structures. Based on the controllable luminescence properties, we devise a new strategy for information security. We believe that such an excellent luminescent system also holds remarkable potential for applications in many other fields.

5.
Angew Chem Int Ed Engl ; 62(13): e202218670, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36723229

RESUMEN

Photochemical afterglow systems have drawn considerable attention in recent years due to their regulable photophysical properties and charming application potential. However, conventional photochemical afterglow suffered from its unrepeatability due to the consumption of energy cache units as afterglow photons are emitted. Here we report a novel strategy to realize repeatable photochemical afterglow (RPA) through the reversible storage of 1 O2 by 2-pyridones. Near-infrared afterglow with a lifetime over 10 s is achieved, and its initial intensity shows no significant reduction over 50 excitation cycles. A detailed mechanism study was conducted and confirmed the RPA is realized through the singlet oxygen-sensitized fluorescence emission. Furthermore, the generality of this strategy is demonstrated and tunable afterglow lifetimes and colors are achieved by rational design. The developed RPA is further applied for attacker-misleading information encryption, presenting a repeatable-readout.

6.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236052

RESUMEN

The plastic waste problem has recently attracted unprecedented attention globally. To reduce the adverse eff ects on environments, biodegradable polymers have been studied to solve the problems. Poly(ε-caprolactone) (PCL) is one of the common biodegradable plastics used on its own or blended with natural polymers because of its excellent properties after blending. However, PCL and natural polymers are difficult to blend due to the polymers' properties. Grafted polymerization of maleic anhydride and dibenzoyl peroxide (DBPO) with PCL is one of the improvements used for blending immiscible polymers. In this study, we first focused on the effects of three factors (stirring time, maleic anhydride (MA) amount and benzoyl peroxide amount) on the grafting ratio with a maximum value of 4.16% when applying 3.000 g MA and 1.120 g DBPO to 3.375 g PCL with a stirring time of 18 h. After that, the grafting condition was studied based on the kinetic thermal decomposition and activation energy by the Coats-Redfern method. The optimal fitting model was confirmed by the determination coefficient of nearly 1 to explain the contracting volume mechanism of synthesized PCL-g-MA. Consequently, grafted MA hydrophilically augmented PCL as the reduced contact angle of water suggests, facilitating the creation of a plastic-biomaterial composite.

7.
Angew Chem Int Ed Engl ; 61(27): e202201630, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35353427

RESUMEN

Afterglow materials have drawn considerable attention due to their attractive luminescent properties. However, their low-efficiency luminescence in aqueous environment limits their applications in life sciences. Here, we developed a molecular fusion strategy to improve the afterglow efficiency of photochemical afterglow materials. By fusing a cache unit with an emitter, we obtained a blue afterglow system with a quantum yield up to 2.59 %. This is 162 times higher than that achieved with the traditional physical mixing system and more than an order of magnitude larger than that of the covalent coupling system. High-efficiency afterglow nanoparticles were obtained and utilized for bio-imaging with a high signal-to-noise ratio (SNR) of 131, and for the lateral flow immunoassay (LFIA) of ß-hCG with a low limit of detection (LOD) of 0.34 mIU mL-1 . This paves a new way for the construction of high-efficiency afterglow materials and expands the number of luminescence reporter candidates for disease diagnosis and bio-imaging.


Asunto(s)
Luminiscencia , Nanopartículas , Diagnóstico por Imagen , Límite de Detección , Nanopartículas/química
8.
ACS Appl Mater Interfaces ; 14(9): 11681-11689, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35226450

RESUMEN

Stimuli-responsive luminescent materials with time-dependent color are highly desirable in optical information encryption. In this study, multiple time-dependent color processes are achieved by light-responsive afterglow materials through the strategy of absorption compensation. Based on the single-emission band of light-responsive afterglow materials, the color of samples could show a time-dependent change from colored to colorless over several seconds. The strategy possesses high flexibility such that the stimulus light and emission color of light-responsive afterglow materials can be adjusted conveniently to adapt to various scenes. It is also beneficial to expand the capacity and complexity of information encryption. A three-color, time-resolved anticounterfeiting, and data encryption mode is demonstrated. This facile absorption compensation method based on light-response afterglow materials may promote the development of advanced dynamic information encryption.

9.
R Soc Open Sci ; 7(5): 200296, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32537225

RESUMEN

A well-dispersed self-assembled silver nanoparticles (AgNPs) ink with high purity was synthesized via AgNO3 emulsion prepared by blending an AgNO3 aqueous solution and a liquid paraffin solution of both polyoxyethylene (20) sorbitan monooleate (Tween 80) and sorbitan monooleate (Span 80). The ink remained as an emulsion at low temperatures; however, it produced AgNPs after sintering at about 60°C and showed a high stability at nanoscale sizes (with diameters ranging 8.6-13.4 nm) and a high conductivity. During the whole procedure, Tween 80 acted as a surfactant, reductant and stabilizer. Presumably, Tween 80 underwent an autoxidation process, where a free radical of an α-carbon of ether oxygen was formed by hydrogen abstraction. The mean diameter of emulsion droplets could be reduced by decreasing water content and increasing the ratio of surfactant and concentration of AgNO3 aqueous solution. Consequently, the thermogravimetric analysis and X-ray diffraction result clarified the purity of the produced Ag0. Dynamic light scattering and ultraviolet-visible spectroscopy clarified that an increased concentration of AgNO3 decreased the particle size.

10.
RSC Adv ; 9(58): 34032-34038, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35528898

RESUMEN

Cellulose nanocrystals (CNCs) are extracted from cellulosic fibers via sulfuric acid hydrolysis and found to exhibit unique properties due to their nanoscale, ordered structure, and surface morphology. The dispersion stability of a CNC suspension is a significant factor when CNCs are applied for reinforcement of a composite or ink jet printing. Since sulfuric acid hydrolysis introduces sulfate groups on CNC surfaces, we considered that charging conditions needed to be characterized, typically based on electrophoretic mobility. After the electrophoretic mobility was measured, several theoretical equations were applied to fit those values to assume the proper CNC particle shape. While Smoluchowski's equation is often used for this purpose, its applicability to CNCs should be reconsidered due to the thin, rod-like shape of CNCs with a finite length and high charge density. In this sense, we measured the surface charge and electrophoretic mobility of well-characterized CNCs. The obtained experimental data have been analyzed by using various electrokinetic equations. Our analytical results suggested that Smoluchowski's equation and the Ohshima-Henry equation overestimated the magnitude of the mobility of CNCs because it ignores the double layer relaxation and end effect. They also suggested that neither the Ohshima-Overbeek averaged equation nor the Ohshima-Overbeek perpendicular equation described the mobility of CNCs appropriately because those equations consider the double layer relaxation and end effect of a cylinder in a limited manner. Instead, the modified Ohshima-Overbeek equation was presented to be preferred for such a charged cylinder with a small aspect ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...