Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 128(4): 1283-1299, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29480818

RESUMEN

The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Docetaxel/farmacología , Sistemas de Liberación de Medicamentos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elementos de Respuesta , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Endorribonucleasas/genética , Femenino , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Saccharomyces cerevisiae , Transducción de Señal/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Kidney Int ; 92(3): 599-611, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28396120

RESUMEN

Osteocytes within the mineralized bone matrix control bone remodeling by regulating osteoblast and osteoclast activity. Osteocytes express the aging suppressor Klotho, but the functional role of this protein in skeletal homeostasis is unknown. Here we identify Klotho expression in osteocytes as a potent regulator of bone formation and bone mass. Targeted deletion of Klotho from osteocytes led to a striking increase in bone formation and bone volume coupled with enhanced osteoblast activity, in sharp contrast to what is observed in Klotho hypomorphic (kl/kl) mice. Conversely, overexpression of Klotho in cultured osteoblastic cells inhibited mineralization and osteogenic activity during osteocyte differentiation. Further, the induction of chronic kidney disease with high-turnover renal osteodystrophy led to downregulation of Klotho in bone cells. This appeared to offset the skeletal impact of osteocyte-targeted Klotho deletion. Thus, our findings establish a key role of osteocyte-expressed Klotho in regulating bone metabolism and indicate a new mechanism by which osteocytes control bone formation.


Asunto(s)
Envejecimiento/metabolismo , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/patología , Glucuronidasa/metabolismo , Osteocitos/metabolismo , Osteogénesis/fisiología , Animales , Densidad Ósea , Huesos/metabolismo , Huesos/patología , Diferenciación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/genética , Humanos , Inmunohistoquímica , Proteínas Klotho , Ratones , Ratones Noqueados , Osteoblastos/fisiología , Osteoclastos/fisiología , Cultivo Primario de Células , Transducción de Señal
3.
J Bone Miner Res ; 31(6): 1225-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26763740

RESUMEN

Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as investigate the effect of targeting sclerostin with a neutralizing antibody (scl-Ab) in MM bone disease. Here we confirm increased sclerostin levels in MM compared with precursor disease states like monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM. Furthermore, we found that a humanized MM xenograft mouse model bearing human MM cells (NOD-SCID.CB17 male mice injected intravenously with 2.5 million of MM1.S-Luc-GFP cells) demonstrated significantly higher concentrations of mouse-derived sclerostin, suggesting a microenvironmental source of sclerostin. Associated with the increased sclerostin levels, activated ß-catenin expression levels were lower than normal in MM mouse bone marrow. Importantly, a high-affinity grade scl-Ab reversed osteolytic bone disease in this animal model. Because scl-Ab did not demonstrate significant in vitro anti-MM activity, we combined it with the proteasome inhibitor carfilzomib. Our data demonstrated that this combination therapy significantly inhibited tumor burden and improved bone disease in our in vivo MM mouse model. In agreement with our in vivo data, sclerostin expression was noted in marrow stromal cells and osteoblasts of MM patient bone marrow samples. Moreover, MM cells stimulated sclerostin expression in immature osteoblasts while inhibiting osteoblast differentiation in vitro. This was in part regulated by Dkk-1 secreted by MM cells and is a potential mechanism contributing to the osteoblast dysfunction noted in MM. Our data confirm the role of sclerostin as a potential therapeutic target in MM bone disease and provides the rationale for studying scl-Ab combined with proteasome inhibitors in MM. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Enfermedades Óseas/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoblastos/metabolismo , Microambiente Tumoral , Proteínas Adaptadoras Transductoras de Señales , Animales , Enfermedades Óseas/genética , Enfermedades Óseas/patología , Femenino , Glicoproteínas/genética , Xenoinjertos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Osteoblastos/patología
4.
Development ; 142(3): 438-43, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25564652

RESUMEN

Cell-based bone regeneration strategies offer promise for traumatic bone injuries, congenital defects, non-union fractures and other skeletal pathologies. Postnatal bone remodeling and fracture healing provide evidence that an osteochondroprogenitor cell is present in adult life that can differentiate to remodel or repair the fractured bone. However, cell-based skeletal repair in the clinic is still in its infancy, mostly due to poor characterization of progenitor cells and lack of knowledge about their in vivo behavior. Here, we took a combined approach of high-throughput screening, flow-based cell sorting and in vivo transplantation to isolate markers that identify osteochondroprogenitor cells. We show that the presence of tetraspanin CD9 enriches for osteochondroprogenitors within CD105(+) mesenchymal cells and that these cells readily form bone upon transplantation. In addition, we have used Thy1.2 and the ectonucleotidase CD73 to identify subsets within the CD9(+) population that lead to endochondral or intramembranous-like bone formation. Utilization of this unique cell surface phenotype to enrich for osteochondroprogenitor cells will allow for further characterization of the molecular mechanisms that regulate their osteogenic properties.


Asunto(s)
Biomarcadores/metabolismo , Regeneración Ósea/fisiología , Condrocitos/fisiología , Osteoblastos/fisiología , Células Madre/fisiología , 5'-Nucleotidasa/metabolismo , Animales , Condrocitos/citología , Condrocitos/metabolismo , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Procesamiento de Imagen Asistido por Computador , Riñón/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Osteoblastos/citología , Osteoblastos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tetraspanina 29/metabolismo , Microtomografía por Rayos X
5.
Nature ; 508(7494): 103-107, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24670641

RESUMEN

Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization. One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 (ref. 2) and its substrate XBP1 (ref. 3). Previous studies report UPR activation in various human tumours, but the role of XBP1 in cancer progression in mammary epithelial cells is largely unknown. Triple-negative breast cancer (TNBC)--a form of breast cancer in which tumour cells do not express the genes for oestrogen receptor, progesterone receptor and HER2 (also called ERBB2 or NEU)--is a highly aggressive malignancy with limited treatment options. Here we report that XBP1 is activated in TNBC and has a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumour growth and tumour relapse and reduced the CD44(high)CD24(low) population. Hypoxia-inducing factor 1α (HIF1α) is known to be hyperactivated in TNBCs. Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Antígeno CD24/metabolismo , Hipoxia de la Célula/genética , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Silenciador del Gen , Humanos , Receptores de Hialuranos/metabolismo , Ratones , Invasividad Neoplásica , Recurrencia Local de Neoplasia , Pronóstico , ARN Polimerasa II/metabolismo , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/genética , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA