Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 39(6): 3710-3720, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511855

RESUMEN

Tryptanthrin, an alkaloid applied in traditional Chinese medicine, exhibits a variety of pharmacological activities. This study aimed to investigate the anti-tumor activity of the tryptanthrin derivative (8-cyanoindolo[2,1-b]quinazoline-6,12-dione [CIQ]) in breast cancer cells. In both MDA-MB-231 and MCF-7 breast cancer cells, CIQ inhibited cell viability and promoted caspase-dependent apoptosis. At the concentration- and time-dependent ways, CIQ increased the levels of p-ERK, p-JNK, and p-p38 in breast cancer cells. We found that exposure to the JNK inhibitor or the ERK inhibitor partially reversed CIQ's viability. We also observed that CIQ increased reactive oxygen species (ROS) generation, and upregulated the phosphorylation and expression of H2AX. However, the pretreatment of the antioxidants did not protect the cells against CIQ's effects on cell viability and apoptosis, which suggested that ROS does not play a major role in the mechanism of action of CIQ. In addition, CIQ inhibited the invasion of MDA-MB-231 cells and decreased the expression of the prometastatic factors (MMP-2 and Snail). These findings demonstrated that the possibility of this compound to show promise in playing an important role against breast cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias de la Mama , Supervivencia Celular , Quinazolinas , Femenino , Humanos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células MCF-7 , Quinazolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Chem Biol Interact ; 380: 110538, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164279

RESUMEN

The enzyme pyruvate kinase M2 (PKM2) is involved in glycolysis, which plays an important role in the regulation of tumor progression. In this study, we investigated the anti-tumor activity of N-(4-(3-(3-(methylamino)-3-oxopropyl)-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-pyrazol-1-yl)phenyl)propiolamide (MTP), a PKM2 inhibitor, in oral squamous cell carcinoma (OSCC) cells. Our results showed that MTP inhibited cell growth with IC50 values of 0.59 µM and 0.78 µM in SCC2095 and HSC-3 OSCC cells, respectively. MTP induced caspase-dependent apoptosis, which was associated with the modulation of PKM2 and oncogenic biomarkers epidermal growth factor receptor and ß-catenin. In addition, MTP increased the generation of reactive oxygen species (ROS) and modulated the expression of autophagic gene products, including LC3B-II and p62. Western blotting showed that MTP inhibited Janus kinase 2 (JAK2) signaling, and JAK2 overexpression partially reversed MTP-mediated cytotoxicity. Taken together, these data indicate the potential use of MTP as a therapeutic agent for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Janus Quinasa 2/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Apoptosis , Autofagia , Proliferación Celular
3.
Environ Toxicol ; 38(3): 666-675, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36436203

RESUMEN

According to the alarming statistical analysis of global cancer, there are over 19 million new diagnoses and more than 10 million deaths each year. One such cancer is the oral squamous cell carcinoma (OSCC), which requires new therapeutic strategies. Ficus septica extract has been used in traditional medicine to treat infectious diseases. In this study, we examined the anti-proliferative effects of an extract of F. septica bark (FSB) in OSCC cells. Our results showed that FSB caused a concentration-dependent reduction in the viability of SCC2095 OSCC cells, as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and was less sensitive to fibroblasts. In addition, FSB induced apoptosis by activating caspases, accompanied by the modulation of Akt/mTOR/NF-κB and mitogen-activated protein kinase signaling. Moreover, FSB increased reactive oxygen species generation in a concentration-dependent manner in SCC2095 cells. Furthermore, FSB inhibited cell migration and modulated the levels of the cell adhesion molecules including E-cadherin, N-cadherin, and Snail in SCC2095 cells. Pinoresinol, a lignan isolated from FSB, showed antitumor effects in SCC2095 cells, implying that this compound might play an important role in FSB-induced OSCC cell death. Taken together, FSB is a potential anti-tumor agent against OSCC cells.


Asunto(s)
Carcinoma de Células Escamosas , Ficus , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/patología , Línea Celular Tumoral , Apoptosis , Proliferación Celular
4.
Environ Toxicol ; 37(6): 1404-1412, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35212453

RESUMEN

Oral squamous cell carcinoma (OSCC) represents a clinical challenge due to the lack of effective therapy to improve prognosis. Hippo/Yes-associated protein (YAP) signaling has emerged as a promising therapeutic target for squamous cell carcinoma treatment. In this study, we investigated the antitumor activity and underlying mechanisms of {[N-(4-(5-(3-(3-(4-acetamido-3-(trifluoromethyl)phenyl)ureido)phenyl)-1,2,4-oxadiazol-3-yl)-3-chlorophenyl)-nicotinamide]} (ATN), a novel YAP inhibitor, in OSCC cells. ATN exhibited differential antiproliferative efficacy against OSCC cells (IC50 as low as 0.29 µM) versus nontumorigenic human fibroblast cells (IC50  = 1.9 µM). Moreover, ATN effectively suppressed the expression of YAP and YAP-related or downstream targets, including Akt, p-AMPK, c-Myc, and cyclin D1, which paralleled the antiproliferative efficacy of ATN. Supporting the roles of YAP in regulating cancer cell survival and migration, ATN not only induced caspase-dependent apoptosis, but also suppressed migration activity in OSCC. Mechanistically, the antitumor activity of ATN in OSCC was attributed, in part, to its ability to regulate Mcl-1 expression. Together, these findings suggest a translational potential of YAP inhibitors, represented by ATN as anticancer therapy for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Apoptosis , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteínas Señalizadoras YAP
5.
Biomedicines ; 9(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34829756

RESUMEN

Trytanthrin, found in Ban-Lan-Gen, is a natural product containing an indoloquinazoline moiety and has been shown to possess anti-inflammatory and anti-viral activities. Chronic inflammation and hepatitis B are known to be associated with the progression of hepatocellular carcinoma (HCC). In this study, a series of tryptanthrin derivatives were synthesized to generate potent anti-tumor agents against HCC. This effort yielded two compounds, A1 and A6, that exhibited multi-fold higher cytotoxicity in HCC cells than the parent compound. Flow cytometric analysis demonstrated that A1 and A6 caused S-phase arrest and downregulated the expression of cyclin A1, B1, CDK2, and p-CDC2. In addition to inducing caspase-dependent apoptosis, A1 and A6 exhibited similar regulation of the phosphorylation or expression of multiple signaling targets, including Akt, NF-κB, and mitogen-activated protein kinases. The anti-tumor activities of A1 and A6 were also attributable to the generation of reactive oxygen species, accompanied by an increase in p-p53 levels. Therefore, A1 and A6 have potential clinical applications since they target diverse aspects of cancer cell growth in HCC.

6.
Mar Drugs ; 19(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925873

RESUMEN

In this study, the anti-proliferative effect of ilimaquinone, a sesquiterpene derivative from the marine sponge, in breast cancer cells was investigated. Ilimaquinone inhibited the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 10.6 µM and 13.5 µM, respectively. Non-tumorigenic human breast epithelial cells were less sensitive to ilimaquinone than breast cancer cells. Flow cytometric and Western blot analysis showed that ilimaquinone induced S-phase arrest by modulating the expression of p-CDC-2 and p21. Ilimaquinone induces apoptosis, which is accompanied by multiple biological biomarkers, including the downregulation of Akt, ERK, and Bax, upregulation of p38, loss of mitochondrial membrane potential, increased reactive oxygen species generation, and induced autophagy. Collectively, these findings suggest that ilimaquinone causes cell cycle arrest as well as induces apoptosis and autophagy in breast cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Poríferos/metabolismo , Quinonas/farmacología , Sesquiterpenos/farmacología , Animales , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Quinonas/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Sesquiterpenos/aislamiento & purificación , Transducción de Señal
7.
Environ Toxicol ; 36(7): 1316-1325, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33713530

RESUMEN

Secondary metabolites in marine organisms exhibit various pharmacological activities against diseases, such as cancer. In this study, the anti-proliferative effect of JBIR-100, a macrolide isolated from Streptomyces sp., was investigated in breast cancer cells. Cell growth was inhibited in response to JBIR-100 treatment concentration- and time-dependently in both MCF-7 and MDA-MB-231 breast cancer cells. JBIR-100 caused apoptosis, as verified by caspase activation and the cleavage of PARP. Western blotting revealed that JBIR-100 modulated the expression of Akt/NF-κB signaling components and Bcl-2 family members. Overexpression of Mcl-1 partially rescued MCF-7 cells from JBIR-100-induced cytotoxicity. In addition, transmission electron microscopy analyses, confocal analysis, and western blot assay indicated that JBIR-100 inhibited autophagy in MCF-7 cells. Exposure to the autophagy inhibitor did not synergize JBIR-100-induced apoptosis. In summary, our results suggested that JBIR-100 may be potentially used for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Streptomyces , Apoptosis , Autofagia , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Humanos , Células MCF-7 , Macrólidos/farmacología
8.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114727

RESUMEN

We recently isolated a cardiac glycoside (CG), αldiginoside, from an indigenous plant in Taiwan, which exhibits potent tumor-suppressive efficacy in oral squamous cell carcinoma (OSCC) cell lines (SCC2095 and SCC4, IC50 < 0.2 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays). Here, we report that αldiginoside caused Sphase arrest and apoptosis, through the inhibition of a series of signaling pathways, including those mediated by cyclin E, phospho-CDC25C (p-CDC25C), and janus kinase/signal transducer and activator of transcription (JAK/STAT)3. αldiginoside induced apoptosis, as indicated by caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage. Equally important, αldiginoside reduced Mcl-1 expression through protein degradation, and overexpression of Mcl-1 partially protected SCC2095 cells from αldiginoside's cytotoxicity. Taken together, these data suggest the translational potential of αldiginoside to foster new therapeutic strategies for OSCC treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Células Escamosas/metabolismo , Glicósidos Cardíacos/farmacología , Neoplasias de la Boca/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteolisis , Transducción de Señal/efectos de los fármacos
9.
Biomedicines ; 8(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825464

RESUMEN

In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values of 7.5 and 8.5 µM, respectively. Flow cytometric analysis demonstrated that IQ induced caspase-dependent apoptosis in SCC4 cells and modulated the expression of several cell growth-related gene products, including Akt, p38, Mcl-1, and p53. Notably, p53 knockdown caused higher resistance to IQ's anti-tumor activity. In addition, IQ increased reactive oxygen species generation, which was partially reversed by the addition of antioxidants. Furthermore, it triggered autophagy, as evidenced by acidic organelle formation and LC3B-II and Atg5 expression in SCC4 cells. Pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine partially decreased IQ-induced apoptosis, suggesting that IQ induced protective autophagy. In summary, IQ has potential to be used in OSCC therapy.

10.
Comput Struct Biotechnol J ; 17: 151-159, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30788081

RESUMEN

Cardiac glycosides (CGs), prescribed to treat congestive heart failure and arrhythmias, exert potent antitumor activity. In this study, divaricoside (DIV), a CG isolated from Strophanthus divaricatus was examined for its antitumor potency in oral squamous cell carcinoma (OSCC) cells. Cell growth was inhibited by DIV in a dose- and time-dependent manner in SCC2095 and OECM-1 OSCC cells using MTT assays. DIV induced S and G2/M phase arrest accompanied by downregulation of phosphorylated CDC25C, CDC25C, and CDC2 in SCC2095 cells. In addition, DIV induced apoptosis by activating caspase-3 and downregulating the expression of Mcl-1. Furthermore, overexpression of Mcl-1 partially reversed DIV-induced death in SCC2095 cells. Additionally, western blot and transmission electron microscopy analyses also indicated that DIV induced autophagy in SCC2095 cells. However, the combination of autophagy inhibitor did not affect DIV-mediated apoptosis in SCC2095 cells. Together, these findings suggest that translational potential of DIV to be developed as a therapeutic agent for OSCC treatment.

11.
Mar Drugs ; 16(7)2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018246

RESUMEN

The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that plays a key role in regulating cellular metabolism, and is a therapeutic target for cancer therapy. To search for potential PPARγ activators, a compound library comprising 11 marine compounds was examined. Among them, a sterol, 3ß,11-dihydroxy-9,11-secogorgost-5-en-9-one (compound 1), showed the highest PPARγ activity with an IC50 value of 8.3 µM for inhibiting human breast adenocarcinoma cell (MCF-7) growth. Western blotting experiments showed that compound 1 induces caspase activation and PARP cleavage. In addition, compound 1 modulated the expression of various PPARγ-regulated downstream biomarkers including cyclin D1, cyclin-dependent kinase (CDK)6, B-cell lymphoma 2 (Bcl-2), p38, and extracellular-signal-regulated kinase (ERK). Moreover, compound 1 increased reactive oxygen species (ROS) generation, upregulated the phosphorylation and expression of H2AX, and induced autophagy. Interestingly, pre-treatment with the autophagy inhibitor 3-methyladenine rescued cells from compound 1-induced growth inhibition, which indicates that the cytotoxic effect of compound 1 is, in part, attributable to its ability to induce autophagy. In conclusion, these findings suggest the translational potential of compound 1 in breast cancer therapy.


Asunto(s)
Antozoos/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Esteroles/farmacología , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Células MCF-7 , PPAR gamma/metabolismo , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
Chem Biol Interact ; 206(2): 375-84, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24161432

RESUMEN

As GPR30 has been implicated in mediating cancer cell proliferation, this study aimed to examine the antitumor effect of the GPR30 antagonist G15 in human oral squamous cell carcinoma (OSCC). G15 induced dose-dependent cytotoxicity, apoptosis and G2/M cell cycle arrest in a panel of OSCC cells. The results showed that G15 could inhibit the growth of the oral cancer cells with IC50 value 11.2 µM for SCC4, 15.6 µM for SCC9, and 7.8 µM for HSC-3, respectively. Flow cytometric analysis and Comet assay indicated that G15 suppressed the viability of SCC4 and HSC-3 cells by inducing apoptosis and G2/M arrest. In addition, G15 down regulated the expression of Akt, cell cycle-related proteins, and mitogen-activated protein kinases, but increased the levels of LC3B-II and the accumulation of autophagosomes. Inhibition of autophagy by chloroquine does not affect the G15-induced apoptosis in SCC4 cells. Mechanistic evidence indicated that the antiproliferative effect was mediated through the downregulation of cdc2, cdc25c and NF-κB expression. Taken together, our findings suggest the potential of G15 in treating OSCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Benzodioxoles/toxicidad , Quinolinas/toxicidad , Receptores de Estrógenos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Benzodioxoles/síntesis química , Benzodioxoles/química , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Caspasas/metabolismo , Línea Celular Tumoral , Cloroquina/química , Cloroquina/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/síntesis química , Quinolinas/química , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Asian Pac J Cancer Prev ; 14(8): 4607-10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24083711

RESUMEN

The aim of this study was evaluated the prevalence of Treg cells in peripheral blood in patients with gastric cancer, and investigate the effect of gastric cancer cells on their differentiation. ELISA was employed to assess the concentrations of TGF-ß and IL-10 in gastric cancer patients' serum. Then, mouse gastric cancer cells were co-cultured with T lymphocytes or T lymphocytes + anti-TGF-ß. Flow cytometric analysis and RT-PCR were then performed to detect Treg cells and TGF-ß and IL-10 expression in gastric cancer cells. Our data showed that the expression of TGF-ß and IL-10 in the patients with gastric cancer was increased compared to the case with healthy donors. The population of Treg cells and the expression levels of TGF-ß and IL-10 in the co-culture group were much higher than in the control group (18.6% vs 9.5%) (P<0.05). Moreover, the population of Treg cells and the expression levels of TGF-ß and IL-10 in the co-culture systerm were clearly decreased after addition of anti-TGF-ß (7.7% vs 19.6%) (P<0.01). In conclusion, gastric cancer cells may induce Treg cell differentiation through TGF-ß, and further promote immunosuppression.


Asunto(s)
Diferenciación Celular/inmunología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Animales , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Interleucina-10/sangre , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/sangre , Factor de Crecimiento Transformador beta1/sangre , Células Tumorales Cultivadas
14.
Artículo en Inglés | MEDLINE | ID: mdl-23843889

RESUMEN

Although the antitumor activity of the crude extract of wild bitter gourd (Momordica charantia L.) has been reported, its bioactive constituents and the underlying mechanism remain undefined. Here, we report that 3 ß ,7 ß -dihydroxy-25-methoxycucurbita-5,23-diene-19-al (DMC), a cucurbitane-type triterpene isolated from wild bitter gourd, induced apoptotic death in breast cancer cells through peroxisome proliferator-activated receptor (PPAR) γ activation. Luciferase reporter assays indicated the ability of DMC to activate PPAR γ , and pharmacological inhibition of PPAR γ protected cells from DMC's antiproliferative effect. Western blot analysis indicated that DMC suppressed the expression of many PPAR γ -targeted signaling effectors, including cyclin D1, CDK6, Bcl-2, XIAP, cyclooxygenase-2, NF- κ B, and estrogen receptor α , and induced endoplasmic reticulum stress, as manifested by the induction of GADD153 and GRP78 expression. Moreover, DMC inhibited mTOR-p70S6K signaling through Akt downregulation and AMPK activation. The ability of DMC to activate AMPK in liver kinase (LK) B1-deficient MDA-MB-231 cells suggests that this activation was independent of LKB1-regulated cellular metabolic status. However, DMC induced a cytoprotective autophagy presumably through mTOR inhibition, which could be overcome by the cotreatment with the autophagy inhibitor chloroquine. Together, the ability of DMC to modulate multiple PPAR γ -targeted signaling pathways provides a mechanistic basis to account for the antitumor activity of wild bitter gourd.

15.
Cancer Chemother Pharmacol ; 68(2): 489-96, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21072520

RESUMEN

PURPOSE: Epigenetic agents are among the newly targeted therapeutic strategies being studied with intense interest for patients with multiple myeloma. Here, we demonstrate the antitumor activity of a phenylbutyrate-based histone deacetylase (HDAC) inhibitor, (S)-HDAC42, and identify its possible targets in myeloma cells. METHODS: The antiproliferative effect of (S)-HDAC42 was compared with suberoylanilide hydroxamic acid (SAHA) in three myeloma cell lines, IM-9, RPMI-8226, and U266. Flow cytometry and terminal transferase dUTP nick-end labeling (TUNEL) assay were used to demonstrate the induction of apoptosis by (S)-HDAC42. Moreover, the proposed mechanisms of action, such as modulation of Akt, NF-κB pathway, and cell cycle-related proteins, were investigated by western blotting. RESULTS: (S)-HDAC42 exhibited four- to sevenfold higher potency relative to SAHA in suppressing myeloma cell viabilities. The apoptotic effect induced by (S)-HDAC42 was through both intrinsic and extrinsic pathways, as evidenced by increased cleavage of caspase-3, caspase-8, and caspase-9 and release of cytochrome c from mitochondria. In addition to HDAC inhibition, (S)-HDAC42 also disturbed signaling pathways governing cell survival, including downregulating Akt phosphorylation and NF-κB signaling. The modulation of cell cycle-related proteins by (S)-HDAC42 suggested its inhibitory effect on cell cycle propagation. CONCLUSION: These data suggest the translational value of (S)-HDAC42 in developing new therapeutic strategies for myeloma, which warrants further investigations.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Mieloma Múltiple/tratamiento farmacológico , Fenilbutiratos/farmacología , Caspasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacología , Concentración 50 Inhibidora , Isoenzimas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mieloma Múltiple/patología , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Vorinostat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...