Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Int J Obes (Lond) ; 48(6): 749-763, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379083

RESUMEN

Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.


Asunto(s)
Encéfalo , Terapia por Ejercicio , Resistencia a la Insulina , Mitocondrias , Obesidad , Humanos , Obesidad/terapia , Obesidad/complicaciones , Obesidad/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Encéfalo/metabolismo , Terapia por Ejercicio/métodos , Enfermedades Neurodegenerativas/terapia , Animales
3.
Metabolism ; 152: 155787, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215964

RESUMEN

Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.


Asunto(s)
Síndrome Metabólico , Enfermedades Mitocondriales , Animales , Síndrome Metabólico/metabolismo , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Suplementos Dietéticos , Poder Psicológico
4.
Neurol Sci ; 45(4): 1419-1428, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102519

RESUMEN

In recent years, the stroke incidence has been increasing year by year, and the related sequelae after stroke, such as cognitive impairment, motor dysfunction, and post-stroke depression, seriously affect the patient's rehabilitation and daily activities. Repetitive transcranial magnetic stimulation (rTMS), as a safe, non-invasive, and effective new rehabilitation method, has been widely recognized in clinical practice. This article reviews the application and research progress of rTMS in treating different functional impairments (cognitive impairment, motor dysfunction, unilateral spatial neglect, depression) after stroke in recent years, and preliminary summarized the possible mechanisms. It has been found that the key parameters that determine the effectiveness of rTMS in improving post-stroke functional impairments include pulse number, stimulated brain areas, stimulation intensity and frequency, as well as duration. Generally, high-frequency stimulation is used to excite the ipsilateral cerebral cortex, while low-frequency stimulation is used to inhibit the contralateral cerebral cortex, thus achieving a balance of excitability between the two hemispheres. However, the specific mechanisms and the optimal stimulation mode for different functional impairments have not yet reached a consistent conclusion, and more research is needed to explore and clarify the best way to use rTMS. Furthermore, we will identify the issues and challenges in the current research, explore possible mechanisms to deepen understanding of rTMS, propose future research directions, and offer insightful insights for better clinical applications.


Asunto(s)
Agnosia , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estimulación Magnética Transcraneal , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Encéfalo , Corteza Cerebral
5.
J Phys Chem Lett ; 14(37): 8376-8384, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37706473

RESUMEN

Perovskite materials are promising candidates for the implementation of electrically pumped lasers considering the enhanced performance of perovskite-based light-emitting diodes. Nonetheless, current methods of fabricating perovskite optical microcavities require complex patterning technologies to build suitable resonant cavities for perovskite laser emission, burdening the device structure design. To address this issue, we applied inkjet printing, a maskless patterning technique, to directly create spontaneous formations of polycrystalline perovskite microcavity arrays to explore their laser-emitting action. The substrate surface tension was tuned to modulate the perovskite crystallization process in combination with optimization of printing ink recipes. As a result, polycrystalline perovskite microcavity arrays were achieved, contributing to the laser emission at 528 nm with a lasing threshold of 1.37 mJ/cm2, while simultaneously achieving high-definition patterning of flexible display. These results clearly illustrate the efficiency of inkjet printing technology in the preparation of polycrystalline perovskite optical microcavities and promote the development of flexible laser arrayed displays, providing a facile process toward the realization of perovskite-cavity laser devices.

6.
Front Physiol ; 14: 1197224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398904

RESUMEN

Objective: The purpose of this study was to employ metabolomics for the analysis of urine metabolites in swimmers, with the aim of establishing models for assessing their athletic status and competitive potential. Furthermore, the study sought to compare the identification efficacy of multi-component (urine and blood) model versus single-component (urine or blood) models, in order to determine the optimal approach for evaluating training and competitive status. Methods: A total of 187 Chinese professional swimmers, comprising 103 elite and 84 sub-elite level athletes, were selected as subjects for this study. Urine samples were obtained from each participant and subjected to nuclear magnetic resonance (NMR) metabolomics analysis. Significant urine metabolites were screened through multivariable logistic regression analysis, and an identification model was established. Based on the previously established model of blood metabolites, this study compared the discriminative and predictive performance of three models: either urine or blood metabolites model and urine + blood metabolites model. Results: Among 39 urine metabolites, 10 were found to be significantly associated with the athletic status of swimmers (p < 0.05). Of these, levels of 2-KC, cis-aconitate, formate, and LAC were higher in elite swimmers compared to sub-elite athletes, while levels of 3-HIV, creatinine, 3-HIB, hippurate, pseudouridine, and trigonelline were lower in elite swimmers. Notably, 2-KC and 3-HIB exhibited the most substantial differences. An identification model was developed to estimate physical performance and athletic level of swimmers while adjusting for different covariates and including 2-KC and 3-HIB. The urine metabolites model showed an area under the curve (AUC) of 0.852 (95% CI: 0.793-0.912) for discrimination. Among the three identification models tested, the combination of urine and blood metabolites showed the highest performance than either urine or blood metabolites, with an AUC of 0.925 (95% CI: 0.888-0.963). Conclusion: The two urine metabolites, 2-KC and 3-HIV, can serve as significant urine metabolic markers to establish a discrimination model for identifying the athletic status and competitive potential of Chinese elite swimmers. Combining two screened urine metabolites with four metabolites reported exhibiting significant differences in blood resulted in improved predictive performance compared to using urine metabolites alone. These findings indicate that combining blood and urine metabolites has a greater potential for identifying and predicting the athletic status and competitive potential of Chinese professional swimmers.

7.
Front Surg ; 10: 1095505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273830

RESUMEN

Background: Prevention of deep vein thrombosis (DVT) is indispensable in the treatment of lower limb fractures during the perioperative period. This study aimed to develop and validate a novel model for predicting the risk of DVT in elderly patients after orthopedic surgeries for lower limb fractures. Methods: This observational study included 576 elderly patients with lower limb fractures who were surgically treated from January 2016 to December 2018. Eleven items affecting DVT were optimized by least absolute shrinkage and selection operator regression analysis. Multivariable logistic regression analysis was performed to construct a predictive model incorporating the selected features. C-index was applied to evaluate the discrimination. Decision curve analysis was employed to determine the clinical effectiveness of this model and calibration plot was applied to evaluate the calibration of this nomogram. The internal validation of this model was assessed by bootstrapping validation. Results: Predictive factors that affected the rate of DVT in this model included smoking, time from injury to surgery, operation time, blood transfusion, hip replacement arthroplasty, and D-dimer level after operation. The nomogram showed significant discrimination with a C-index of 0.919 (95% confidence interval: 0.893-0.946) and good calibration. Acceptable C-index value could still be reached in the interval validation. Decision curve analysis indicated that the DVT risk nomogram was useful within all possibility threshold. Conclusion: This newly developed nomogram could be used to predict the risk of DVT in elderly patients with lower limb fractures during the perioperative period.

8.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108410

RESUMEN

Studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in regulating virus infection, host immune response, and other biological processes. Although some lncRNAs have been reported to be involved in antiviral immunity, many lncRNAs have unknown functions in interactions between the host and various viruses, especially influenza A virus (IAV). Herein, we demonstrate that the expression of lncRNA LINC02574 can be induced by IAV infection. Treatment with viral genomic RNA, poly (I:C), or interferons (IFNs) significantly stimulated LINC02574 expression, while RIG-I knockdown and IFNAR1 knockout significantly decreased LINC02574 expression after viral infection or IFN treatment. In addition, inhibition of LINC02574 expression in A549 cells enhanced IAV replication, while overexpression of LINC02574 inhibited viral production. Interestingly, knockdown of LINC02574 attenuated the expression of type I and type III IFNs and multiple ISGs, as well as the activation of STAT1 triggered by IAV infection. Moreover, LINC02574 deficiency impaired the expression of RIG-I, TLR3, and MDA5, and decreased the phosphorylation level of IRF3. In conclusion, the RIG-I-dependent interferon signaling pathway can induce LINC02574 expression. Moreover, the data reveal that LINC02574 inhibits IAV replication by positively regulating the innate immune response.


Asunto(s)
Virus de la Influenza A , Gripe Humana , ARN Largo no Codificante , Virosis , Humanos , Virus de la Influenza A/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inmunidad Innata/genética , Interferones , Replicación Viral/genética
9.
Front Oncol ; 13: 1095313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793597

RESUMEN

Background: Immune checkpoint blockade (ICB) therapy has brought remarkable clinical benefits to patients with advanced non-small cell lung carcinoma (NSCLC). However, the prognosis remains largely variable. Methods: The profiles of immune-related genes for patients with NSCLC were extracted from TCGA database, ImmPort dataset, and IMGT/GENE-DB database. Coexpression modules were constructed using WGCNA and 4 modules were identified. The hub genes of the module with the highest correlations with tumor samples were identified. Then integrative bioinformatics analyses were performed to unveil the hub genes participating in tumor progression and cancer-associated immunology of NSCLC. Cox regression and Lasso regression analyses were conducted to screen prognostic signature and to develop a risk model. Results: Functional analysis showed that immune-related hub genes were involved in the migration, activation, response, and cytokine-cytokine receptor interaction of immune cells. Most of the hub genes had a high frequency of gene amplifications. MASP1 and SEMA5A presented the highest mutation rate. The ratio of M2 macrophages and naïve B cells revealed a strong negative association while the ratio of CD8 T cells and activated CD4 memory T cells showed a strong positive association. Resting mast cells predicted superior overall survival. Interactions including protein-protein, lncRNA and transcription factor interactions were analyzed and 9 genes were selected by LASSO regression analysis to construct and verify a prognostic signature. Unsupervised hub genes clustering resulted in 2 distinct NSCLC subgroups. The TIDE score and the drug sensitivity of gemcitabine, cisplatin, docetaxel, erlotinib and paclitaxel were significantly different between the 2 immune-related hub gene subgroups. Conclusions: These findings suggested that our immune-related genes can provide clinical guidance for the diagnosis and prognosis of different immunophenotypes and facilitate the management of immunotherapy in NSCLC.

10.
Clin Rehabil ; 37(7): 942-953, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36537108

RESUMEN

OBJECTIVE: Parkinson's disease is one of the most common neurodegenerative diseases in the world, which seriously damages motor and balance ability. Dual-task training is discussed as an appropriate intervention. The aim of this review was to synthesize the existing research findings on the efficacy of dual-task training for people with Parkinson's disease. DATA RESOURCES: A systematic search on PubMed, CENTRAL, Embase, Web of Science, and PEDro, randomized-controlled trials (RCTs) of dual-task training for individuals with Parkinson's disease. METHODS: Articles published until 1 November 2022 were included. Our search identified 7 RCTs with a total of 406 subjects. Review Manager 5.4 software was used for bias evaluation and to process the results of the outcome measures collected from the investigations. RESULTS: Dual-task training was associated with significant improvement in most motor and balance outcomes including gait velocity (standard mean difference (SMD) = 0.62; 95% CI, 0.37-0.87; I2 = 31%; P = 0.21), cadence (SMD = 0.29; 95% CI, 0.05-0.53; I2 = 0%; P = 0.71), timed-up-and-go test (mean difference (MD) = -2.38; 95% CI, -3.93 to -0.84; I2 = 32%; P = 0.22) and mini-balance evaluation systems test (MD = 2.04; 95% CI, 1.05-3.03; I2 = 0%; P = 0.92). CONCLUSION: Evidence from meta-analyses suggests that dual-task training may improve motor and balance abilities in Parkinson's disease patients. Future research should focus on finding the most appropriate dual-task treatment model for patients with different degrees, in order to further improve the rehabilitation treatment of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/rehabilitación , Marcha , Modalidades de Fisioterapia , Actividades Cotidianas , Evaluación de Resultado en la Atención de Salud , Equilibrio Postural
11.
Front Microbiol ; 13: 1013896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523837

RESUMEN

Phosphite, a reduced form of orthophosphate, is characterized by high solubility, and transportation efficiency and can be used as potential phosphorus fertilizer, plant biostimulant and supplemental fertilizer in agriculture. However, the effects of phosphite fertilizer on soil properties and microorganisms are poorly understood. This study evaluated the effects of phosphate and phosphite fertilizers on the different forms of phosphorus, alkaline phosphatase (ALP) activity, and phoD-harboring bacterial community in the alfalfa (Medicago sativa) field. The study used four concentrations (30, 60, 90, and 120 mg P2O5 kg-1 soil) of phosphate (KH2PO4) and phosphite (KH2PO3) fertilizers for the alfalfa field treatment. The results showed that both phosphite and phosphate fertilizers increased the total phosphorus (TP) and available phosphorus (AP) contents in the soil. The phosphorus content of the phosphite-treated soil was lower than that of the phosphate-treated one. TP, inorganic phosphate (Pi), and AP negatively regulated ALP activity, which decreased with increasing phosphate and phosphite fertilizers concentrations. Furthermore, high-throughput sequencing analysis identified 6 phyla and 29 families, which were classified from the altered operational taxonomic units (OTUs) of the soil samples. The redundancy analysis (RDA) revealed that pH, TP, AP and Pi were significantly related to the phoD-harboring bacterial community constructure. The different fertilizer treatments altered the key families, contributing to soil ALP activities. Frankiaceae, Sphingomonadaceae, and Rhizobiaceae positively correlated with ALP activity in phosphite-treated soil. Moreover, the structural equation model (SEM) revealed that ALP activity was affected by the phoD-harboring bacterial community through altered organic phosphorus (Po), AP, total nitrogen (TN), soil organic carbon (SOC), and pH levels under phosphate fertilizer treatment. However, the effect was achieved through positive regulation of pH and AP under phosphite fertilizer. Thus, the changes in soil properties and phoD-harboring bacteria in response to phosphate and phosphite treatments differed in the alfalfa field. This study is the first to report the effects of phosphite on the soil properties of an alfalfa field and provides a strong basis for phosphite utilization in the future. Highlights: - Phosphite and phosphate increase the total phosphorus and available phosphorus.- The pH was the dominant factor influencing the phoD-harboring bacterial community under phosphite fertilizer.- The response of soil properties and phoD-harboring bacterial community to phosphate and phosphite fertilizers differed in the alfalfa field.

13.
Plant Physiol Biochem ; 192: 35-49, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206705

RESUMEN

Phosphite, a reduced form of phosphate, inhibits the growth and even has toxic effect on plants. To learn more about the mechanism of alfalfa responses to phosphite, the morphological and physiological characteristics, and the metabolites and transcript levels were comprehensively analyzed following the exposure of alfalfa seedlings to phosphite and phosphate under greenhouse conditions. The results showed that phosphite inhibited seedling growth and photosynthesis. However, the absorption efficiency of phosphite was higher than that of phosphate in roots, which was supported by increased total phosphorus concentration of 16.29% and 52.30% on days 8 and 12. Moreover, phosphite stress affected the synthesis of lipids and carbohydrates, which were reflected in enhanced glycolipid and sulfolipid in roots and amylose in shoots. Phosphite stress resulted in a decrease in indole acetic acid (IAA) in the whole plant and zeatin in the shoots, which could enable alfalfa to adapt to the phosphite environment. Some genes involved in phosphate starvation response included SPX, phosphate response regulator2, and inorganic phosphate transporter 1-4 (PHT1;4) in roots were affected by phosphite stress. In addition, some genes that are involved in stress responses and DNA repair were induced by phosphite stress. These observations together suggest that alfalfa responds to phosphite stress by inhibiting growth, regulating the genes induced by phosphate starvation, improving oxidative protection, promoting DNA repair, and adjusting the IAA and zeatin signaling transductions. Our findings provide novel insights into the molecular response to phosphite stress in alfalfa.

14.
Front Cell Infect Microbiol ; 12: 948602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017370

RESUMEN

Cervical spine injury (CSI) accounts for significant mortality in the intensive care unit (ICU), whereas sepsis remains one of the major causes of death in patients with CSI. However, there is no effective method to diagnose sepsis timely. The aim of this study is to investigate the effect of metagenomic next-generation sequencing (mNGS) on the pathogen features and the prognostic prediction of CSI patients with sepsis. A total of 27 blood samples from 17 included patients were tested by mNGS. Data of mNGS were compared with the conventional culture method. The Kaplan-Meier plots were used to visualize survival curves. A Cox proportional hazards model was used to identify independent prognostic factors for survival. Results showed that mNGS detected a wide spectrum of pathogens in CSI patients with sepsis, including 129 bacterial species, 8 viral species, and 51 fungal species. mNGS indicated 85.2% positive results, while the conventional culture method only showed 11.1% positive results in the blood samples. Further analyses revealed that mNGS had no prognostic effect on the septic CSI patients in ICU, whereas positive results of blood culture were closely correlated with an increased hazard ratio (HR) (HR 77.7067, 95%CI 2.860-2641.4595, p = 0.0155). Our results suggested that the mNGS application may provide evidence for clinicians to use antibiotics when a CSI case is diagnosed with sepsis.


Asunto(s)
Metagenómica , Sepsis , Vértebras Cervicales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Unidades de Cuidados Intensivos , Metagenómica/métodos , Estudios Retrospectivos , Sensibilidad y Especificidad , Sepsis/diagnóstico
15.
J Mol Neurosci ; 72(9): 1977-1989, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35861948

RESUMEN

Mild cognitive impairment (MCI) is a pathological stage between normal cognitive aging and dementia. The blood-brain barrier (BBB) breakdown is emerging as an early biomarker of MCI. This study aimed to visually analyze the literatures related to MCI caused by BBB dysfunction in recent 20 years, systematically identify collaboration networks, track research trends, highlight current hot spots, and predict future frontiers in this field. The related literatures published from 2000 to 2021 were obtained from the Web of Science with the search term "mild cognitive impairment and (blood-brain barrier or neurovascular unit or neurovascular coupling)". VOSviewer software was used to present knowledge map, CiteSpace software was used to extract literature information and make tables, including the top most influential countries, authors, institutions, periodicals, keywords, and references. A total of 333 literatures were used for visual analysis. After 2013, the literatures in the field of BBB dysfunction-induced MCI showed an increased trend in terms of year of publication and quantity of material, with more than 40 publications published each year. USA, England, China, and Sweden cooperated closely. In terms of institutions, Harvard Med Sch ranked first in the number of papers published, followed by Mstricht Univ and Univ Washington. In terms of journals, three of the top five co-cited journals belonged to USA, the other two journals were Neurobiol Aging and J Alzheimers DIS, which were from England and Netherlands respectively. A total of 1752 authors were identified, with Abhay P Sagare the most published and Zlokovic BV the most cited. Keyword emergence detection analysis showed that inflammation, oxidative stress, and memory were new research hot spot in this field. Overall, the research on BBB dysfunction-induced MCI is booming. In the future, cooperation and communication between different countries and institutions should be strengthened.


Asunto(s)
Barrera Hematoencefálica , Disfunción Cognitiva , China , Humanos
16.
Nutr Metab (Lond) ; 19(1): 52, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907984

RESUMEN

Lactate has previously been considered a metabolic waste and is mainly involved in exercise-induced fatigue. However, recent studies have found that lactate may be a mediator of the beneficial effects of exercise on brain health. Lactate plays a dual role as an energy supply substrate and a signaling molecule in this process. On the one hand, astrocytes can uptake circulating glucose or degrade glycogen for glycolysis to produce lactate, which is released into the extracellular space. Neurons can uptake extracellular lactate as an important supplement to their energy metabolism substrates, to meet the demand for large amounts of energy when synaptic activity is enhanced. Thus, synaptic activity and energy transfer show tight metabolic coupling. On the other hand, lactate acts as a signaling molecule to activate downstream signaling transduction pathways by specific receptors, inducing the expression of immediate early genes and cerebral angiogenesis. Moderate to high-intensity exercise not only increases lactate production and accumulation in muscle and blood but also promotes the uptake of skeletal muscle-derived lactate by the brain and enhances aerobic glycolysis to increase brain-derived lactate production. Furthermore, exercise regulates the expression or activity of transporters and enzymes involved in the astrocyte-neuron lactate shuttle to maintain the efficiency of this process; exercise also activates lactate receptor HCAR1, thus affecting brain plasticity. Rethinking the role of lactate in cognitive function and the regulatory effect of exercise is the main focus and highlights of the review. This may enrich the theoretical basis of lactate-related to promote brain health during exercise, and provide new perspectives for promoting a healthy aging strategy.

17.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683738

RESUMEN

We report a construction of distributed-feedback (DFB) optical microcavities, which is realized through mechanical contact between a high-quality planar thin film of a polymeric semiconductor and a large-area homogeneous nanograting. Using poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT) as the active medium for the planar layer, we achieve strong amplified spontaneous emission from such a microcavity with a low threshold. This not only simplifies largely the fabrication techniques for DFB microcavities, but also avoids the unexpected chemical interactions during solution processing between the organic semiconductors and the nanograting materials. Furthermore, high-quality polymer thin films with high surface smoothness and high thickness homogeneity are employed without any modulations for constructing the microcavities. This also suggests new designs of microcavity light-emitting diodes, or even for realizing electrically pumped polymer lasers, simply by metallizing the dielectric nanogratings as the electrodes.

18.
J Phys Chem Lett ; 13(26): 6093-6100, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35759216

RESUMEN

Exciton dynamics significantly influences the performance of the optoelectronic devices, which is intensively studied in the light-emitting perovskite of CH3NH3PbBr3 (MAPbBr3). However, most of the existing investigations have focused on the free excitons. In this study, we investigate the emissive recombination from defect states in MAPbBr3 using temperature- and excitation-dependent photoluminescence measurements. It is revealed that two emission peaks centered at about 550 and 590 nm are presented at temperatures as low as 10 K, instead of one peak at 535 nm for the observation at room temperature. These two peaks are attributed to the emission of bound excitons after self-absorption and bulk defects, respectively. It is found that the distribution of the bound and trapped excitons is strongly influenced by the morphology of the MAPbBr3 films. These results provide deep insights into the exciton dynamics in MAPbBr3, facilitating new physics for the design of related optoelectronic materials and devices.

19.
Front Nutr ; 9: 800901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571940

RESUMEN

Research to date has provided novel insights into lactate's positive role in multiple brain functions and several brain diseases. Although notable controversies and discrepancies remain, the neurobiological role and the metabolic mechanisms of brain lactate have now been described. A theoretical framework on the relevance between lactate and brain function and brain diseases is presented. This review begins with the source and route of lactate formation in the brain and food; goes on to uncover the regulatory effect of lactate on brain function; and progresses to gathering the application and concentration variation of lactate in several brain diseases (diabetic encephalopathy, Alzheimer's disease, stroke, traumatic brain injury, and epilepsy) treatment. Finally, the dual role of lactate in the brain is discussed. This review highlights the biological effect of lactate, especially L-lactate, in brain function and disease studies and amplifies our understanding of past research.

20.
J Transl Med ; 20(1): 60, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109880

RESUMEN

BACKGROUND: High intensity interval training (HIIT) has been reported to exert better effects on cardiovascular fitness in obesity, but little known about the arterial stiffness (AS) in female university students with normal weight obesity (NWO). Thus, this study aimed to investigate the effects of HIIT on the body composition, heart rate (HR), blood pressure (BP), blood lipids metabolism as well as the novel parameters of propensity for AS (arterial velocity pulse index [AVI], arterial pressure volume index [API]) for female university students with NWO. METHODS: Forty female university students with NWO were randomly assigned to control group (n = 20) and HIIT group (3 bouts of 9­min intervals at 90% of the maximal heart rate [HRmax], interspersed by 1 min rest, 5 days a week, n = 20). Tests were performed before and after 4 weeks of training. Repeated measures ANOVA and simple effect test analysis were used to analyze dependent variable changes. RESULTS: After 4 weeks HIIT statistically significantly improved the body composition by decreasing the body mass index, body fat percent, total body fat mass (BFM), BFM of left arm, measured circumference of left arm, and obesity degree, and increasing the total body skeletal muscle mass, protein content, total body water, fat free mass, body cell mas, and InBody score. HIIT also statistically significantly decreased the HR and BP. As for the lipid profile, HIIT obviously ameliorated the blood lipids metabolism by decreasing the levels of total cholesterol (TC), triglyceride, low-density lipoprotein, and TC/HDL, and increasing the levels of high-density lipoprotein (HDL). In addition, the AVI and API were markedly decreased via HIIT intervention. CONCLUSIONS: HIIT produced significant and meaningful benefits for body composition, HR, BP, and blood lipids metabolism, and could decrease AS in female university students with NWO. This suggests that HIIT may effectively reduce the risk of arteriosclerosis and protect the cardiovascular function for female university students with NWO. Trial registration ChiCTR2100050711. Registered 3 September 2021. Retrospectively registered.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Rigidez Vascular , China , Femenino , Humanos , Obesidad/metabolismo , Obesidad/terapia , Proyectos Piloto , Estudiantes , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...