Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(26): 33733-33739, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38915250

RESUMEN

Calcium ion batteries (CIBs) are a promising energy storage device due to the low redox potential of the Ca metal and the abundant reserves of the Ca element. However, the large radius and divalent nature of Ca2+ lead to its slow ion diffusion kinetics and the lack of suitable electrode materials for Ca storage. Here, a layered structure of Na2Ti3O7 (NTO) is presented as an anode material for nonaqueous CIBs. This NTO anode demonstrates a high discharge capacity of 165 mA h g-1 at 100 mA g-1 and a remarkable capacity retention rate of 80%, even after 2000 cycles at 500 mA g-1, surpassing the performance of all reported intercalation-type anode materials for CIBs. The NTO transfers to layered CaVIINaIXTi3O7 (CNTO) with intercalation of Ca2+ and extraction of Na+ during the first discharge process. Then, the CNTO undergoes the reversible insertion/extraction of Ca2+ during subsequent cycling. Additionally, density functional theory calculations reveal that NTO possesses a rapid two-dimensional diffusion pathway for Ca2+. Moreover, the full CIBs based on NTO as the anode further underscore its potential for CIBs. This work presents promising anode materials for CIBs, offering opportunities to promote the development of high-performance CIBs.

2.
Adv Mater ; 36(6): e2309753, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939787

RESUMEN

Zinc powder (Zn-P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti-corrosive Zn-P-based anode with a functional layer formed from a MXene and Cu-THBQ (MXene/Cu-THBQ) heterostructure is successfully fabricated via microfluidic-assisted 3D printing. The unusual anti-corrosive and strong adsorption of Zn ions using the MXene/Cu-THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn-P with the MXene/Cu-THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm-2 /1 mAh cm-2 . Furthermore, a Zn-organic full battery matched with a 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life.

3.
Nat Commun ; 14(1): 4435, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481665

RESUMEN

The operation of traditional aqueous-electrolyte zinc-ion batteries is adversely affected by the uncontrollable growth of zinc dendrites and the occurrence of side reactions. These problems can be avoided by the development of functional hydrogel electrolytes as replacements for aqueous electrolytes. However, the mechanism by which most hydrogel electrolytes inhibit the growth of zinc dendrites on a zinc anode has not been investigated in detail, and there is a lack of a large-scale recovery method for mainstream hydrogel electrolytes. In this paper, we describe the development of a recyclable and biodegradable hydrogel electrolyte based on natural biomaterials, namely chitosan and polyaspartic acid. The distinctive adsorptivity and inducibility of chitosan and polyaspartic acid in the hydrogel electrolyte triggers a double coupling network and an associated synergistic inhibition mechanism, thereby effectively inhibiting the side reactions on the zinc anode. In addition, this hydrogel electrolyte played a crucial role in an aqueous acid-based Zinc/MnO2 battery, by maintaining its interior two-electron redox reaction and inhibiting the formation of zinc dendrites. Furthermore, the sustainable biomass-based hydrogel electrolyte is biodegradable, and could be recovered from the Zinc/MnO2 battery for subsequent recycling.

4.
Adv Mater ; 35(9): e2209886, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515180

RESUMEN

Zn powder (Zn-P)-based anodes are always regarded as ideal anode candidates for zinc ion batteries owing to their low cost and ease of processing. However, the intrinsic negative properties of Zn-P-based anodes such as easy corrosion and uncontrolled dendrite growth have limited their further applications. Herein, a novel 3D cold-trap environment printing (3DCEP) technology is proposed to achieve the MXene and Zn-P (3DCEP-MXene/Zn-P) anode with highly ordered arrangement. Benefitting from the unique inhibition mechanism of high lattice matching and physical confinement effects within the 3DCEP-MXene/Zn-P anode, it can effectively homogenize the Zn2+ flux and alleviate the Zn deposition rate of the 3DCEP-MXene/Zn-P anode during Zn plating-stripping. Consequently, the 3DCEP-MXene/Zn-P anode exhibits a superior cycling lifespan of 1400 h with high coulombic efficiency of ≈9.2% in symmetric batteries. More encouragingly, paired with MXene and Co doped MnHCF cathode via 3D cold-trap environment printing (3 DCEP-MXene/Co-MnHCF), the 3DCEP-MXene/Zn-P//3DCEP-MXene/Co-MnHCF full battery delivers high cyclic durability with the capacity retention of 95.7% after 1600 cycles. This study brings an inspired universal pathway to rapidly fabricate a reversible Zn anode with highly ordered arrangement in a cold environment for micro-zinc storage systems.

5.
Angew Chem Int Ed Engl ; 62(8): e202215552, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36536537

RESUMEN

The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2 -sulfolane-H2 O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2 O, as reflected in a much lower freezing point (<-80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.

6.
Small ; 18(5): e2104507, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34821033

RESUMEN

As a typical battery-type material, CuCo2 S4 is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo2 S4 hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo2 S4 with optimized vacancy concentration presents a high specific capacity of 231 mAh g-1 at 1 A g-1 , a ≈1.78 times increase compared to that of pristine CuCo2 S4 , and exhibits a superior rate capability (73.8% capacity retention at 20 A g-1 ). Furthermore, flexible solid-state asymmetric supercapacitor devices assembled with the deficient CuCo2 S4 HNs and VN nanosheets deliver a high energy density of 61.4 W h kg-1 at 750 W kg-1 . Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s-1 . These findings provide insights for regulating electrode reactivity of battery-type materials through intentional nanoarchitectonics and vacancy engineering.

7.
Small Methods ; 5(6): e2100094, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34927912

RESUMEN

Rechargeable aqueous zinc ion batteries have attracted increasing attention as a new energy storage system because of the high ionic conductivity and safe aqueous electrolyte. The spontaneous vanadium dissolution in aqueous electrolytes is one major problem because the water with serious polarity would corrode the crystal structure of vanadium-based cathodes. Here, an in situ artificial cathode electrolyte interphase (CEI) strategy is proposed to kinetically suppress the vanadium dissolution in aqueous zinc ion batteries. The strontium ion is introduced into vanadium oxide layers as a sacrifice guest, which would directly precipitate upon getting out from the vanadium-based cathode to in situ from a CEI coating layer on the surface. This strategy is proven with the help of various technologies, and the remarkable ability of the CEI layer to suppress cathode dissolution is evaluated by multiple electrochemical and chemical methods. As a result, the cathode after CEI conversion exhibits the best recharge capacity retention after open circuit voltage rest for 3 days in comparison with other cathodes. This work reports a general strategy to construct the electrode-electrolyte interface for suppressing vanadium-based cathodes dissolution in aqueous electrolytes and beyond.

8.
J Hazard Mater ; 402: 123470, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32712364

RESUMEN

Solar-to-chemical energy conversion is valuable and sustainable strategy for energy and environmental crisis through photocatalysis. The amorphous SnOx modified BiOCl (Sn-BiOCl) full-spectrum-responsive catalysts were designed and synthesized through solvothermal method. The introduced Sn regulates the growth of BiOCl to form ultrathin nanosheets with surface oxygen vacancies. And the surface modification of SnOx induces interfacial internal electric field via charge redistribution on the interface of BiOCl and SnOx to accelerate the photogenerated charge separation. The modification of SnOx decreased work function of Sn-BiOCl and thus elevated its conduction band and valence band simultaneously, leading enhanced photocatalytic reducibility with the improved generation rate of ·O2-. The surface SnOx and oxygen vacancies of Sn-BiOCl broadened light absorption range and enhanced photocatalytic performance synergistically, resulting in 14-fold increased photodegradation rate of phenol compared with pure BiOCl under full spectrum. This method is also able to expand to other metal ions (such as Fe3+, In3+ and Sb3+). This work provides a valuable concept in structure regulating for enhanced photocatalytic performance in the removal of organic pollutants by interfacial internal electric field and surface oxygen vacancies.

9.
Phys Chem Chem Phys ; 22(39): 22349-22356, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32996498

RESUMEN

An understanding of the high photocatalytic performance reported for MoS2/BiOI nanocomposite is far from satisfactory. Here, the interfacial interaction and electronic properties of a MoS2/BiOI heterostructure were investigated systematically for the first time by first-principle calculations incorporating a semi-empirical dispersion-correction scheme. Our results confirm the reasonable existence of van der Waals interactions and a favorable Z-scheme mechanism, based on the typical interfacial cohesive energy and the energy level lineup at the interface. Analyzing the charge density differences and work functions, the built-in electric field is formed along the direction from MoS2 to BiOI after the interface equilibrium, and facilitates the separation of photoinduced electron-hole pairs in the interface. Additionally, it can be inferred that the incorporation of MoS2 into BiOI increases the carrier mobility and improves light harvesting, in agreement with the previously reported experimental data. Our work provides an insight into the mechanism of the enhanced visible-light photocatalytic activity of a MoS2/BiOI heterostructure, and helps to design other new heterostructure combinations.

10.
RSC Adv ; 10(34): 19961-19973, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35520430

RESUMEN

Magnetic BiOBr/Fe3O4/RGO composites with remarkable photocatalytic capability were prepared by a simple hydrothermal method to load 3D flower-like microspherical BiOBr onto the surface of Fe3O4/RGO. Under visible-light irradiation (λ > 420 nm), the BiOBr/Fe3O4/RGO composite with 56% mass percentage of Fe3O4/RGO shows the optimal removal ability for Rhodamine B, and the total removal efficiency is 96%. The coupling of Fe3O4/RGO and BiOBr elevates the conduction band of BiOBr, which enhances the reduction level of BiOBr/Fe3O4/RGO composites. Ultimately, based on experiments and theoretical calculations, an n-type Schottky contact formed at the heterojunction interface between RGO doped with Fe3O4 and BiOBr is proposed for photoexcited charge transfer. The RGO with great adsorptivity plays a major role in the photocatalysts composed of BiOBr, RGO and Fe3O4. Further, BiOBr/Fe3O4/RGO composites with permanent-magnetism can be recovered and reused easily by external magnetic field and maintain a total removal efficiency of 90% after four cycles.

11.
Angew Chem Int Ed Engl ; 58(49): 17709-17717, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31476103

RESUMEN

Maximizing the activity of materials towards the alkaline hydrogen evolution reaction while maintaining their structural stability under realistic working conditions remains an area of active research. Herein, we report the first controllable surface modification of graphene(G)/V8 C7 heterostructures by nitrogen. Because the introduced N atoms couple electronically with V atoms, the V sites can reduce the energy barrier for water adsorption and dissociation. Investigation of the multi-regional synergistic catalysis on N-modified G/V8 C7 by experimental observations and density-functional-theory calculations reveals that the increase of electron density on the epitaxial graphene enable it to become favorable for H* adsorption and the subsequent reaction with another H2 O molecule. This work extends the range of surface-engineering approaches to optimize the intrinsic properties of materials and could be generalized to the surface modification of other transition-metal carbides.

12.
ACS Appl Mater Interfaces ; 11(31): 27641-27647, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31252487

RESUMEN

A proof-of-concept strategy for significant enhancement of hydrogen evolution reaction (HER) performance of transition metals via construction of a metal/semiconductor Schottky junction is presented. The decoration of low-cost commercial TiO2 nanoparticles on the surface of microscale Co dendrites causes a significant charge transfer across the Co/TiO2 Schottky interface and enhances the local electron density at the Co surface, confirmed by X-ray photoelectron spectroscopy results and density functional theory calculations. The Co/TiO2 Schottky catalyst displays superior HER activity with a turnover frequency of 0.052 s-1 and an exchange current density of 79 µA cm-2, which are about 4.3 and 4.0 times greater than that of pristine Co, respectively. Moreover, the Co/TiO2 Schottky catalyst displays excellent electrochemical durability for long-term operation in both alkaline solution and high saline solution. Theoretical calculations suggest that the Schottky junction plays an important role to optimize hydrogen adsorption free energy (ΔGH*) by tuning the electronic structure, which enhances the performance for HER of the Co/TiO2 Schottky catalyst. This study of modulating the electronic structure of the catalysts via the Schottky junction could provide valuable insights for designing and synthesizing low-cost, high-performance electrocatalysts.

13.
Phys Chem Chem Phys ; 20(3): 1974-1983, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29299566

RESUMEN

The manipulation of the constituents of novel hetero-photocatalysts is an effective method for improving photocatalytic efficiency, but a theoretical understanding of the relationship between interlayer interaction and photocatalytic activity is still lacking. Herein, the interfacial interactions and electronic properties of MoS2/graphene oxide (GO) heterojunctions with various O concentrations were explored systematically by first-principles calculations. The results indicate that MoS2 and GO can form a stable van der Waals heterojunction, and enhance the built-in internal electric field from GO to the MoS2 surface with the increase in O concentration after interfacial equilibrium. It is inferred that the photogenerated electrons and holes naturally accumulate in the conduction band of GO and the valence band of MoS2, respectively, under the built-in internal electric field driving, indicating the formation of direct Z-scheme heterojunctions. In addition, a red shift of the light absorption edge and the shift up of the conduction band edge of MoS2/GO heterojunctions are observed with an increase in O concentration. It can be concluded that the O atom plays a crucial role in the energy band alignment of MoS2/GO heterojunctions for the improvement of photocatalytic performance. These results are beneficial to understand and design layered MoS2/GO photocatalytic systems or as cocatalysts with other semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...