Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 5(7): 1159-1173, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37337119

RESUMEN

Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.


Asunto(s)
Neoplasias , Humanos , Proteínas , Proliferación Celular , Cetoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Transaminasas/metabolismo
2.
Acta Pharm Sin B ; 13(3): 1145-1163, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970205

RESUMEN

MEK is a canonical effector of mutant KRAS; however, MEK inhibitors fail to yield satisfactory clinical outcomes in KRAS-mutant cancers. Here, we identified mitochondrial oxidative phosphorylation (OXPHOS) induction as a profound metabolic alteration to confer KRAS-mutant non-small cell lung cancer (NSCLC) resistance to the clinical MEK inhibitor trametinib. Metabolic flux analysis demonstrated that pyruvate metabolism and fatty acid oxidation were markedly enhanced and coordinately powered the OXPHOS system in resistant cells after trametinib treatment, satisfying their energy demand and protecting them from apoptosis. As molecular events in this process, the pyruvate dehydrogenase complex (PDHc) and carnitine palmitoyl transferase IA (CPTIA), two rate-limiting enzymes that control the metabolic flux of pyruvate and palmitic acid to mitochondrial respiration were activated through phosphorylation and transcriptional regulation. Importantly, the co-administration of trametinib and IACS-010759, a clinical mitochondrial complex I inhibitor that blocks OXPHOS, significantly impeded tumor growth and prolonged mouse survival. Overall, our findings reveal that MEK inhibitor therapy creates a metabolic vulnerability in the mitochondria and further develop an effective combinatorial strategy to circumvent MEK inhibitors resistance in KRAS-driven NSCLC.

3.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377663

RESUMEN

Mutational activation of KRAS is a common oncogenic event in lung cancer, yet effective therapies are still lacking. Here, we identify B cell lymphoma 6 (BCL6) as a lynchpin in KRAS-driven lung cancer. BCL6 expression was increased upon KRAS activation in lung tumor tissue in mice and was positively correlated with the expression of KRAS-GTP, the active form of KRAS, in various human cancer cell lines. Moreover, BCL6 was highly expressed in human KRAS-mutant lung adenocarcinomas and was associated with poor patient survival. Mechanistically, the MAPK/ERK/ELK1 signaling axis downstream of mutant KRAS directly regulated BCL6 expression. BCL6 maintained the global expression of prereplication complex components; therefore, BCL6 inhibition induced stalling of the replication fork, leading to DNA damage and growth arrest in KRAS-mutant lung cancer cells. Importantly, BCL6-specific knockout in lungs significantly reduced the tumor burden and mortality in the LSL-KrasG12D/+ lung cancer mouse model. Likewise, pharmacological inhibition of BCL6 significantly impeded the growth of KRAS-mutant lung cancer cells both in vitro and in vivo. In summary, our findings reveal a crucial role of BCL6 in promoting KRAS-addicted lung cancer and suggest BCL6 as a therapeutic target for the treatment of this intractable disease.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pulmonares/metabolismo , Mutación , Modelos Animales de Enfermedad , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
4.
Development ; 147(17)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32747435

RESUMEN

Homeostasis of intestinal stem cells (ISCs) is maintained by the orchestration of niche factors and intrinsic signaling networks. Here, we have found that deletion of Erk1 and Erk2 (Erk1/2) in intestinal epithelial cells at embryonic stages resulted in an unexpected increase in cell proliferation and migration, expansion of ISCs, and formation of polyp-like structures, leading to postnatal death. Deficiency of epithelial Erk1/2 results in defects in secretory cell differentiation as well as impaired mesenchymal cell proliferation and maturation. Deletion of Erk1/2 strongly activated Wnt signaling through both cell-autonomous and non-autonomous mechanisms. In epithelial cells, Erk1/2 depletion resulted in loss of feedback regulation, leading to Ras/Raf cascade activation that transactivated Akt activity to stimulate the mTor and Wnt/ß-catenin pathways. Moreover, Erk1/2 deficiency reduced the levels of Indian hedgehog and the expression of downstream pathway components, including mesenchymal Bmp4 - a Wnt suppressor in intestines. Inhibition of mTor signaling by rapamycin partially rescued Erk1/2 depletion-induced intestinal defects and significantly prolonged the lifespan of mutant mice. These data demonstrate that Erk/Mapk signaling functions as a key modulator of Wnt signaling through coordination of epithelial-mesenchymal interactions during intestinal development.


Asunto(s)
Intestinos/embriología , Sistema de Señalización de MAP Quinasas , Vía de Señalización Wnt , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
5.
Biochem Pharmacol ; 177: 113960, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32298693

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) exerts a profound role in regulating mitochondrial function and cellular metabolism. Mitochondrial STAT3 supports RAS-dependent malignant transformation and tumor growth. However, whether pharmacological blockade of STAT3 leads to metabolic lethality in KRAS-mutant lung cancer remains unclear. Pyrvinium pamoate, a clinical antihelminthic drug, preferentially inhibited the growth of KRAS-mutant lung cancer cells in vitro and in vivo. Mechanistic study revealed that pyrvinium dose-dependently suppressed STAT3 phosphorylation at tyrosine 705 and serine 727. Overexpression mitochondrial STAT3 prominently weakened the therapeutic efficacy of pyrvinium. As a result of targeting STAT3, pyrvinium selectively triggered reactive oxygen species release, depolarized mitochondrial membrane potential and suppressed aerobic glycolysis in KRAS-mutant lung cancer cells. Importantly, the cytotoxic effects of pyrvinium could be significantly augmented by glucose deprivation both in vitro and in a patient-derived lung cancer xenograft mouse model in vivo. The combined efficacy significantly correlated with intratumoural STAT3 suppression. Our findings reveal that KRAS-mutant lung cancer cells are vulnerable to STAT3 inhibition exerted by pyrvinium, providing a promising direction for developing therapies targeting STAT3 and metabolic synthetic lethality for the treatment of KRAS-mutant lung cancer.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Compuestos de Pirvinio/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Células A549 , Animales , Línea Celular Transformada , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor de Transcripción STAT3/metabolismo
6.
J Clin Invest ; 130(4): 1752-1766, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874110

RESUMEN

Oncogenic KRAS is a major driver in lung adenocarcinoma (LUAD) that has yet to be therapeutically conquered. Here we report that the SLC7A11/glutathione axis displays metabolic synthetic lethality with oncogenic KRAS. Through metabolomics approaches, we found that mutationally activated KRAS strikingly increased intracellular cystine levels and glutathione biosynthesis. SLC7A11, a cystine/glutamate antiporter conferring specificity for cystine uptake, was overexpressed in patients with KRAS-mutant LUAD and showed positive association with tumor progression. Furthermore, SLC7A11 inhibition by either genetic depletion or pharmacological inhibition with sulfasalazine resulted in selective killing across a panel of KRAS-mutant cancer cells in vitro and tumor growth inhibition in vivo, suggesting the functionality and specificity of SLC7A11 as a therapeutic target. Importantly, we further identified a potent SLC7A11 inhibitor, HG106, that markedly decreased cystine uptake and intracellular glutathione biosynthesis. Furthermore, HG106 exhibited selective cytotoxicity toward KRAS-mutant cells by increasing oxidative stress- and ER stress-mediated cell apoptosis. Of note, treatment of KRAS-mutant LUAD with HG106 in several preclinical lung cancer mouse models led to marked tumor suppression and prolonged survival. Overall, our findings reveal that KRAS-mutant LUAD cells are vulnerable to SLC7A11 inhibition, offering potential therapeutic approaches for this currently incurable disease.


Asunto(s)
Adenocarcinoma del Pulmón , Sistema de Transporte de Aminoácidos y+ , Antineoplásicos/farmacología , Glutatión/metabolismo , Mutación , Proteínas Proto-Oncogénicas p21(ras) , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Phys Condens Matter ; 30(33): 335001, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30004031

RESUMEN

Uniform graphene films and micro-patterns are the cornerstones of graphene-based printed electronics. However, disk-like reduced graphene oxide (RGO) sheets trend to concentrate at the edge of the drop because of the famous coffee-ring effect, resulting in non-uniform patterns. To understand the physics of coffee-ring formation for RGO droplets on hydrophilic substrates, we propose a mechanical model to elucidate the influence and its mechanism of substrate wettability on the solute migration behavior and solute distribution morphology of RGO droplets. Stronger coffee-ring morphology and a slower velocity transition on the PMMA can be observed as compared to that on the glass slides. An explanation based on the mechanical model is provided as the large contact angle on the PMMA leads to a small hindrance force and finally results in more significant coffee-ring morphology. Remarkably, we have revealed one underlying mechanism by which the hydrophilic substrate with better wettability will form more uniform patterns. This study can provide fundamental insights into the relationship between substrate wettability and RGO sheets distribution morphology. It might contribute to morphology regulation of RGO droplets in the DOD printing of graphene films and micro-patterns.

8.
Biomaterials ; 141: 116-124, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28675807

RESUMEN

The heterogeneously-distributed hyperthermia in nanomaterial-mediated photothermal therapy commonly results in incomplete tumor eradication and serious damage of health tissue. Here, we found autophagy was activated in cancer cells underwent photothermal therapy and the inhibition of autophagy significantly enhanced the efficacy of photothermal killing of cancer cells. A formulation of chloroquine-loaded polydopamine nanoparticles was developed for sensitized photothermal cancer therapy, and the in vitro and in vivo study demonstrated that inhibition of autophagy remarkably augmented the efficacy of photothermal therapy, leading to efficient tumor suppression at a mild temperature. The regulation of autophagy provides a new route to increase the efficacy of photothermal cancer therapy.


Asunto(s)
Autofagia/efectos de los fármacos , Cloroquina/uso terapéutico , Hipertermia Inducida/métodos , Indoles/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/terapia , Fototerapia/métodos , Polímeros/uso terapéutico , Animales , Línea Celular Tumoral , Cloroquina/administración & dosificación , Portadores de Fármacos/química , Células HeLa , Humanos , Indoles/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células 3T3 NIH , Nanopartículas/administración & dosificación , Nanopartículas/ultraestructura , Polímeros/administración & dosificación
9.
Exp Dermatol ; 26(11): 1118-1124, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28605165

RESUMEN

It has been reported that the proteasome activator REGγ is associated with multiple oncogenic pathways in human cancers. However, the role of REGγ in the development of melanoma and the underlying mechanisms remain unclear. In this study, we attempted to investigate the effects of REGγ on human melanoma cell proliferation in vitro and in vivo. We demonstrated that knockdown of REGγ inhibited melanoma cell growth and arrested melanoma cell at G1 phase. Furthermore, depletion of REGγ also inhibited the xenograft growth of human melanoma. Mechanistically, REGγ activates Wnt/ß-catenin signal pathway by degrading GSK-3ß in melanoma cell lines and mouse models. Transient knockdown of ß-catenin effectively blocked cell proliferation in REGγ wild-type melanoma cells. In human melanoma samples, REGγ was overexpressed and positively correlated with ß-catenin levels. This study demonstrates that REGγ is a central molecule in the development of melanoma by regulating Wnt/ß-catenin pathway. This suggests that targeting REGγ could be an alternative therapeutic approach for melanoma.


Asunto(s)
Autoantígenos/genética , Proliferación Celular/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Melanoma/genética , Complejo de la Endopetidasa Proteasomal/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Autoantígenos/metabolismo , Línea Celular Tumoral , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Melanoma/metabolismo , Ratones , Trasplante de Neoplasias , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño , beta Catenina/genética
10.
Oncotarget ; 8(3): 5048-5056, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27926503

RESUMEN

Forkhead box D3 (FOXD3), as a transcriptional repressor, is well known to be involved in the regulation of development. Although FoxD3 is associated with several cancers, its role in colon cancer and the underlying mechanism are still unclear. Here, we first showed that FOXD3 knockdown dramatically increased the proliferation of human colon cancer cells, enhanced cell invasive ability and inhibited cell apoptosis. In vivo xenograft studies confirmed that the FOXD3-knockdown cells were more tumorigenic than the controls. Silencing FOXD3 markedly activated EGFR/Ras/Raf/MEK/ERK pathway in human colon cancer cells. In addition, blocking EGFR effectively decreased the activity of MAPK induced by FOXD3 knockdown. In human cancer tissue, the expression of FOXD3 was reduced, however, the EGFR/Ras/Raf/MEK/ERK pathway was activated. Our study indicates that FOXD3 may play a protective role in human colon formation by regulating EGFR/Ras/Raf/MEK/ERK signal pathway. It is proposed that FOXD3 may have potential as a new therapeutic target in human colon cancer treatment.


Asunto(s)
Neoplasias del Colon/patología , Regulación hacia Abajo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Animales , Células CACO-2 , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Trasplante de Neoplasias , Quinasas raf/metabolismo , Proteínas ras/metabolismo
11.
Nat Commun ; 7: 11363, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193833

RESUMEN

No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21(WAF1/CIP1), leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21(WAF1/CIP1), either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21(WAF1/CIP1). Co-administration of BI-2536 and fasudil either in the LSL-KRAS(G12D) mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers.


Asunto(s)
Antineoplásicos/administración & dosificación , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Neoplasias Pulmonares/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Fase G2/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Quinasa Tipo Polo 1
12.
EMBO Mol Med ; 8(5): 477-88, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26964564

RESUMEN

The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.


Asunto(s)
Factor IX/genética , Edición Génica/métodos , Terapia Genética/métodos , Hemofilia B/patología , Hemofilia B/terapia , Mutación Missense , Adenoviridae/genética , Animales , Sistemas CRISPR-Cas , Niño , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Masculino , Ratones , Recombinación Genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...