Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Pharmacol Res ; 208: 107392, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39233057

RESUMEN

AIMS: Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS: Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS: Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.


Asunto(s)
Alcaloides , Apolipoproteínas E , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas Sprague-Dawley , Sesquiterpenos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Animales , Alcaloides/farmacología , Alcaloides/uso terapéutico , Masculino , Humanos , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Apolipoproteínas E/genética , Ratas , Ratones , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Transcriptoma/efectos de los fármacos , Ratones Endogámicos C57BL , Farmacología en Red , Metabolómica , Persona de Mediana Edad , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Femenino
2.
Front Nutr ; 11: 1411374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171106

RESUMEN

Childhood obesity presents a serious health concern associated with gut microbiota alterations. Dietary interventions targeting the gut microbiota have emerged as promising strategies for managing obesity in children. This study aimed to elucidate the impact of stachyose (STS) supplementation on the gut microbiota composition and metabolic processes in obese children. Fecal samples were collected from 40 obese children (20 boys and 20 girls) aged between 6 and 15 and in vitro fermentation was conducted with or without the addition of STS, respectively, followed by 16S rRNA amplicon sequencing and analysis of short-chain fatty acids (SCFAs) and gases. Notably, our results revealed that STS supplementation led to significant alterations in gut microbiota composition, including an increase in the abundance of beneficial bacteria such as Bifidobacterium and Faecalibacterium, and a decrease in harmful bacteria including Escherichia-Shigella, Parabacteroides, Eggerthella, and Flavonifractor. Moreover, STS supplementation resulted in changes in SCFAs production, with significant increases in acetate levels and reductions in propionate and propionate, while simultaneously reducing the generation of gases such as H2S, H2, and NH3. The Area Under the Curve (AUC)-Random Forest algorithm and PICRUSt 2 were employed to identify valuable biomarkers and predict associations between the gut microbiota, metabolites, and metabolic pathways. The results not only contribute to the elucidation of STS's modulatory effects on gut microbiota but also underscore its potential in shaping metabolic activities within the gastrointestinal environment. Furthermore, our study underscores the significance of personalized nutrition interventions, particularly utilizing STS supplementation, in the management of childhood obesity through targeted modulation of gut microbial ecology and metabolic function.

3.
Nat Commun ; 15(1): 6654, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107281

RESUMEN

The ClC-3 chloride/proton exchanger is both physiologically and pathologically critical, as it is potentiated by ATP to detect metabolic energy level and point mutations in ClC-3 lead to severe neurodegenerative diseases in human. However, why this exchanger is differentially modulated by ATP, ADP or AMP and how mutations caused gain-of-function remains largely unknow. Here we determine the high-resolution structures of dimeric wildtype ClC-3 in the apo state and in complex with ATP, ADP and AMP, and the disease-causing I607T mutant in the apo and ATP-bounded state by cryo-electron microscopy. In combination with patch-clamp recordings and molecular dynamic simulations, we reveal how the adenine nucleotides binds to ClC-3 and changes in ion occupancy between apo and ATP-bounded state. We further observe I607T mutation induced conformational changes and augments in current. Therefore, our study not only lays the structural basis of adenine nucleotides regulation in ClC-3, but also clearly indicates the target region for drug discovery against ClC-3 mediated neurodegenerative diseases.


Asunto(s)
Adenosina Trifosfato , Canales de Cloruro , Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Enfermedades Neurodegenerativas , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/química , Humanos , Adenosina Trifosfato/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Nucleótidos de Adenina/metabolismo , Técnicas de Placa-Clamp , Mutación , Adenosina Difosfato/metabolismo , Células HEK293 , Adenosina Monofosfato/metabolismo , Animales , Conformación Proteica
4.
Biochem Biophys Res Commun ; 739: 150585, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39186870

RESUMEN

Congenital cataract is one of the most common causes of childhood blindness, typically resulting from genetic mutations. Over a hundred gene mutations associated with congenital cataract have been identified, with approximately half occurring in the Crystallin genes. In this study, we identified a novel γA-crystallin pathogenic mutation (c. 29G > C, p. Arg10Pro (R10P)), from a four-generation Chinese family with congenital cataract, and investigated its potential molecular mechanisms underlying congenital cataracts. We compared the protein structure and stability of purified the wild type (WT) and R10P under physiological conditions and environmental stresses (UV irradiation, pH imbalance, heat shock, and chemical denaturation) using spectroscopic experiments, SEC analysis, and the UNcle protein analysis system. The results demonstrate that γA-R10P has no significant impact on the structure of γA-crystallin on normal condition. However, it is more sensitive to UV irradiation at high concentrations and prone to aggregation at high temperatures. Therefore, our study reveals the crucial role of the conserved site mutation R10P in maintaining protein structure and stability, providing new insights into the mechanisms of cataract formation.

5.
Int J Biol Macromol ; 277(Pt 2): 134292, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084439

RESUMEN

Congenital cataracts, a prevalent cause of blindness in children, are associated with protein aggregation. γD-crystallin, essential for sustaining lens transparency, exists as a monomer and exhibits excellent structural stability. In our cohort, we identified a nonsense mutation (c.451_452insGACT, p.Y151X) in the CRYGD gene. To explore the effect of truncation mutations on the structure of γD-crystallin, we examined the Y151X and T160RfsX8 mutations, both located in the Greek key motif 4 at the cellular and protein level in this study. Both truncation mutations induced protein misfolding and resulted in the formation of insoluble aggregates when overexpressed in HLE B3 and HEK 293T cells. Moreover, heat, UV irradiation, and oxidative stress increased the proportion of aggregates of mutants in the cells. We next purified γD-crystallin to estimate its structural changes. Truncation mutations led to conformational disruption and a concomitant decrease in protein solubility. Molecular dynamics simulations further demonstrated that partial deletion of the conserved domain within the Greek key motif 4 markedly compromised the overall stability of the protein structure. Finally, co-expression of α-crystallins facilitated the proper folding of truncated mutants and mitigated protein aggregation. In summary, the structural integrity of the Greek key motif 4 in γD-crystallin is crucial for overall structural stability.


Asunto(s)
Catarata , Agregado de Proteínas , Estabilidad Proteica , gamma-Cristalinas , Humanos , gamma-Cristalinas/genética , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo , Catarata/genética , Catarata/metabolismo , Células HEK293 , Mutación , Simulación de Dinámica Molecular , Pliegue de Proteína , Conformación Proteica , Solubilidad , Agregación Patológica de Proteínas/genética
6.
Vaccines (Basel) ; 12(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39066437

RESUMEN

This study analyzed 550 hemodialysis patients, 469 unvaccinated and 81 vaccinated against COVID-19, to assess the impact on infection rates, mortality, and clinical/laboratory parameters. Gender distribution was similar (p = 0.209), but the vaccinated group's median age was significantly lower (p = 0.005). Hospitalization rates showed no significant difference (p = 0.987), while mortality was lower in the vaccinated group (p = 0.041). Only uric acid levels were significantly higher in the vaccinated group (p = 0.009); other parameters, including creatinine and B-type natriuretic peptide, showed no significant differences. Age was an independent predictor of mortality (HR = 1.07, p < 0.001). Peak mortality occurred in December 2022 and January 2023, predominantly among unvaccinated patients. Although vaccination lowered mortality, it did not significantly affect long-term survival rates (p = 0.308). Logistic regression identified age and dialysis duration as significant mortality factors. Monthly death counts indicated higher mortality among unvaccinated patients during peak pandemic months, suggesting that vaccination provides some protection, though no significant long-term survival benefit was found.

7.
Fundam Res ; 4(2): 394-400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38933503

RESUMEN

Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant ßA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.

8.
QJM ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837343

RESUMEN

BACKGROUND: Maple Syrup Urine Disease (MSUD) is an autosomal recessive metabolic disorder originating from defects in the branched-chain α-ketoacid dehydrogenase (BCKDH) complex encoded by BCKDHA, BCKDHB, and DBT. This condition presents a spectrum of symptoms and potentially fatal outcomes. Although numerous mutations in the BCKDH complex genes associated with MSUD have been identified, the relationship between specific genotypes remains to be fully elucidated. AIM: Our objective was to predict the pathogenicity of these genetic mutations and establish potential links between genotypic alterations and the clinical phenotypes of MSUD. DESIGN: Retrospective population-based cohort. METHODS: We analyzed 20 MSUD patients from the Children's Hospital at Zhejiang University School of Medicine (Hangzhou, China), recorded from January 2010 to May 2023. Patients' blood samples were collected by heel-stick through neonatal screening, and amino acid profiles were measured by tandem mass spectrometry. In silico methods were employed to assess the pathogenicity, stability, and biophysical properties. Various computation tools were utilized for assessment, namely PredictSNP, MAGPIE, iStable, Align GVGD, ConSurf and SNP effect. RESULTS: We detected 25 distinct mutations, including 12 novel mutations. The BCKDHB gene was the most commonly affected (53.3%) compared to the BCKDHA gene (20.0%) and DBT gene (26.7%). In silico webservers predicted all novel mutations were disease-causing. CONCLUSIONS: This study highlights the genetic complexity of MSUD and underscores the importance of early detection and intervention. Integrating neonatal screening with advanced sequencing methodologies is pivotal in ensuring precise diagnosis and effective management of MSUD, thereby significantly improving the prognosis for individuals afflicted with this condition.

9.
Adv Ophthalmol Pract Res ; 4(2): 84-94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623588

RESUMEN

Background: Refractive errors, particularly myopia, are the leading visual disorders worldwide, significantly affecting the quality of life (QOL) even after correction. This scoping review focuses on health-related quality of life (HRQOL) measurements for children and adolescents with refractive errors. Main text: We explored generic and disease-specific HRQOL tools, examining their content, psychometric properties, and the impact of various interventions on QOL. Two English databases-PubMed, Embase, and one Chinese database, CNKI, were searched for relevant studies published from January 2001 to October 2023. Inclusion criteria encompassed studies using standardized instruments to assess the QOL of children aged 0-18 with refractive errors. The review compares prevalent HRQOL measurements, analyzes children's refractive error assessments, and discusses intervention effects on patient QOL. Conclusions: The study underlines the necessity of developing disease-specific QOL instruments for very young children and serves as a practical guide for researchers in this field. The findings advocate for a targeted approach in HRQOL assessment among the pediatric population, identifying critical gaps in current methodologies.

10.
Gene ; 918: 148482, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38649061

RESUMEN

OBJECTIVES: Sepsis is a life-threatening infectious disease in which an immune inflammatory response is triggered. The potential effect of ferroptosis-related genes (FRGs) in inflammation of sepsis remained unclear. We focused on identifying and validating core FRGs and their association with immune infiltration in blood from currently all patients with sepsis. METHODS: All current raw data of septic blood were obtained from Gene Expression Omnibus. After removing the batch effect merging into a complete dataset and obtaining Diferentially expressed genes (DEGs). Common cross-talk genes were identified from DEGs and FRGs. WGCNA, GO, KEGG, PPI, GESA, ROC curves, and LASSO regression analysis were performed to indentify and validate key genes based on external septic datasets. Infiltrated immune cells in 2 hub genes (MAPK14 and ACSL4) were conducted using CIBERSORT algorithm and Spearman correlation analysis. Further, the expressions of 2 core FRGs were verified in the LPS-induced ALI and cardiac injury sepsis mice. RESULTS: MAPK14 and ACSL4 were identified, mostly enriched in T cell infiltration through NOD-like receptor signaling pathway according to the high or low 2 hub genes expression. The upregulated 2 ferroptosis-related genes were validated in LPS-induced ALI and cardiac injury mice, accompanied by upregulation of the NLRP3 pathway. CONCLUSION: MAPK14 and ACSL4 could become robustly reliable and promising biomarkers for sepsis by regulating ferroptosis through the NLRP3 pathway, which is mainly associated with T-cell infiltration.


Asunto(s)
Biología Computacional , Ferroptosis , Sepsis , Ferroptosis/genética , Sepsis/genética , Sepsis/inmunología , Animales , Ratones , Biología Computacional/métodos , Humanos , Coenzima A Ligasas/genética , Perfilación de la Expresión Génica/métodos , Masculino , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas/genética
11.
Aging Cell ; 23(6): e14143, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38482753

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal disease manifested by premature aging and aging-related phenotypes, making it a disease model for aging. The cellular machinery mediating age-associated phenotypes in HGPS remains largely unknown, resulting in limited therapeutic targets for HGPS. In this study, we showed that mitophagy defects impaired mitochondrial function and contributed to cellular markers associated with aging in mesenchymal stem cells derived from HGPS patients (HGPS-MSCs). Mechanistically, we discovered that mitophagy affected the aging-associated phenotypes of HGPS-MSCs by inhibiting the STING-NF-ĸB pathway and the downstream transcription of senescence-associated secretory phenotypes (SASPs). Furthermore, by utilizing UMI-77, an effective mitophagy inducer, we showed that mitophagy induction alleviated aging-associated phenotypes in HGPS and naturally aged mice. Collectively, our results uncovered that mitophagy defects mediated the aging-associated markers in HGPS, highlighted the function of mitochondrial homeostasis in HGPS progression, and suggested mitophagy as an intervention target for HGPS and aging.


Asunto(s)
Mitofagia , Progeria , Progeria/metabolismo , Progeria/genética , Progeria/patología , Mitofagia/genética , Humanos , Ratones , Animales , Envejecimiento/metabolismo , Senescencia Celular/genética
12.
MedComm (2020) ; 5(2): e476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405060

RESUMEN

Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.

13.
Clin Chim Acta ; 555: 117804, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316288

RESUMEN

BACKGROUND: Steroid-sensitive nephrotic syndrome (SSNS) accounts for approximately 80% of cases of nephrotic syndrome. The involvement of aberrant lipid metabolism in early SSNS is poorly understood, warranting further investigation. This study aimed to explore alterations in lipid metabolism associated with SSNS pathogenesis. METHODS: A screening cohort containing serum (50 SSNS, 37 controls) and urine samples (27 SSNS, 26 controls) was analyzed by untargeted lipidomic profiling using UHPLC-QTOF-MS. Then, a validation cohort (20 SSNS, 56 controls) underwent further analysis to check the potential clinical application by ROC curve analysis. RESULTS: Lipidomic profiling of serum and urine samples revealed significant lipid alterations in SSNS patients, with the alterations in the serum samples being more significant. An elevated concentration of PE and PG and downregulated concentration of FA were observed in SSNS serum. A total of 38 dysregulated lipids and 5 lipid metabolic pathways were identified in the serum samples in SSNS patients. Validation in the second cohort confirmed differential regulation of nine kinds of lipids, including 5 up-regulated substances [SM d33:2 (m/z = 686.5361), SHexCer d34:1 (m/z = 779.521), PI 20:4_22:4 (m/z = 934.5558), Cer_NS d18:1_23:0 (m/z = 635.6216), and GM3 d36:1 (m/z = 1180.7431)], as well as 4 down-regulated substances: [CE 18:1 (m/z = 650.601), PE 38:6 (m/z = 763.5205), PC 17:0_20:4 (m/z = 795.5868) and EtherPC 16:2e_20:4 (m/z = 763.5498)]. CONCLUSIONS: Untargeted lipidomic analysis successfully identified specific lipid class changes in patients with SSNS, providing a deeper understanding of lipid alterations and underlying mechanisms associated with SSNS.


Asunto(s)
Líquidos Corporales , Síndrome Nefrótico , Niño , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Lipidómica , Metabolismo de los Lípidos , Lípidos
14.
Int J Biol Macromol ; 262(Pt 2): 130191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360245

RESUMEN

Congenital cataract is a major cause of childhood blindness worldwide, with crystallin mutations accounting for over 40 % of gene-mutation-related cases. Our research focused on a novel R114C mutation in a Chinese family, resulting in bilateral coronary cataract with blue punctate opacity. Spectroscopic experiments revealed that ßA3-R114C significantly altered the senior structure, exhibiting aggregation, and reduced solubility at physiological temperature. The mutant also displayed decreased resistance and stability under environmental stresses such as UV irradiation, oxidative stress, and heat. Further, cellular models confirmed its heightened sensitivity to environmental stresses. These data suggest that the R114C mutation impairs the hydrogen bond network and structural stability of ßA3-crystallin, particularly at the boundary of the second Greek-key motif. This study revealed the pathological mechanism of ßA3-R114C and may help in the development of potential treatment strategies for related cataracts.


Asunto(s)
Catarata , Cadena A de beta-Cristalina , Humanos , Catarata/genética , Catarata/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Mutación , Cadena A de beta-Cristalina/genética
15.
Int J Biol Sci ; 20(2): 569-584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169625

RESUMEN

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Mitochondrial dysfunction in renal tubules, occurring early in the disease, is linked to the development of DKD, although the underlying pathways remain unclear. Here, we examine diabetic human and mouse kidneys, and HK-2 cells exposed to high glucose, to show that high glucose disrupts mitochondria-associated endoplasmic reticulum membrane (MAM) and causes mitochondrial fragmentation. We find that high glucose conditions increase mitogen-activated protein kinase 1(MAPK1), a member of the MAP kinase signal transduction pathway, which in turn lowers the level of phosphofurin acidic cluster sorting protein 2 (PACS-2), a key component of MAM that tethers mitochondria to the ER. MAPK1-induced disruption of MAM leads to mitochondrial fragmentation but this can be rescued in HK-2 cells by increasing PACS-2 levels. Functional studies in diabetic mice show that inhibition of MAPK1 increases PACS-2 and protects against the loss of MAM and the mitochondrial fragmentation. Taken together, these results identify the MAPK1-PACS-2 axis as a key pathway to therapeutically target as well as provide new insights into the pathogenesis of DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Enfermedades Mitocondriales , Ratones , Humanos , Animales , Diabetes Mellitus Experimental/complicaciones , Proteína Quinasa 1 Activada por Mitógenos , Glucosa
16.
J Med Virol ; 96(1): e29374, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197487

RESUMEN

We aimed to assess the epidemiological characteristics of respiratory syncytial virus (RSV) infection in Chinese children at different phases of the coronavirus disease 2019 (COVID-19) pandemic, that is, before, during the pandemic and after easing of restrictive measures. We included 123 623 patients aged 0-18 years with respiratory infection symptoms who were suspected with RSV infection from January 1, 2019 to June 30, 2023 in Hangzhou Children's Hospital. Clinical information and RSV test result were extracted from the laboratory information system. We calculated the positive rate of RSV detection by age groups, gender, seasons, types of patients and phases of COVID-19 pandemic. Nonlinear associations between age and risk of RSV infection in three phases of pandemic were assessed by restricted cubic spline regression models. Among 123 623 patients, 3875 (3.13%) were tested as positive. The highest positive rate was observed in children aged 0-28 days (i.e., 12.28%). RSV infection was most prevalent in winter (6.04%), and followed by autumn (2.52%). Although there is no statistical significance regarding the positive rate at three phases of the pandemic, we observed that the rate was lowest during the pandemic and increased after easing the measures in certain age groups (p < 0.05), which was consisted with results from the nonlinear regression analyses. In addition, regression analyses suggested that the age range of children susceptible to RSV got wider, that is, 0-3.5 years, after easing all restrictive measures compared with that before (i.e., 0-3 years) and during the pandemic (i.e., 0-1 year). Based on our findings, we called for attention from health professionals and caregivers on the new epidemiological characteristics of RSV infection in the post-pandemic era after easing the restrictive measures.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Niño , Preescolar , Humanos , Lactante , Recién Nacido , China/epidemiología , COVID-19/epidemiología , Pandemias , Infecciones por Virus Sincitial Respiratorio/epidemiología , Pueblos del Este de Asia
17.
ChemMedChem ; 19(7): e202300374, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37990850

RESUMEN

For unique surface plasmon absorption and fluorescence characteristics, gold nanorods have been developed and widely employed in the biomedical field. However, limitations still exist due their low specific surface area, instability and tendency agglomerate in cytoplasm. Mesoporous silica materials have been broadly applied in field of catalysts, adsorbents, nanoreactors, and drug carriers due to its unique mesoporous structure, highly comparative surface area, good stability and biocompatibility. Therefore, coating gold nanorods with a dendritic mesopore channels can effectively prevent particle agglomeration, while increasing the specific surface area and drug loading efficiency. This review discusses the advancements of GNR@MSN in synthetic process, bio-imaging technique and tumor therapy. Additionally, the further application of GNR@MSN in imaging-guided treatment modalities is explored, while its promising superior application prospect is highlighted. Finally, the issues related to in vivo studies are critically examined for facilitating the transition of this promising nanoplatform into clinical trials.


Asunto(s)
Nanotubos , Neoplasias , Humanos , Oro/química , Dióxido de Silicio/química , Nanotubos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
18.
Int J Biol Macromol ; 257(Pt 2): 128564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061527

RESUMEN

Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.


Asunto(s)
Enfermedad de Dent , Enfermedades Genéticas Ligadas al Cromosoma X , Nefrolitiasis , Humanos , Enfermedad de Dent/genética , Enfermedad de Dent/patología , Nefrolitiasis/genética , Mutación , Transporte Iónico
19.
Cell Commun Signal ; 21(1): 324, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957688

RESUMEN

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is characterized by unrelieved proteinuria after an initial 4-8 weeks of glucocorticoid therapy. Genes in podocytes play an important role in causing SRNS. OBJECTIVE: This study aimed to report a pathogenic mutation in SRNS patients and investigate its effects on podocytes, as well as the pathogenic mechanism. METHODS: We screened out a novel mutation by using whole-exon sequencing in the SRNS cohort and verified it via Sanger sequencing. Conservative analysis and bioinformatic analysis were used to predict the pathogenicity of the mutation. In vitro, stable podocyte cell lines were constructed to detect the effect of the mutation on the function of the podocyte. Moreover, an in vivo mouse model of podocyte ANLN gene knockout (ANLNpodKO) was used to confirm clinical manifestations. Transcriptome analysis was performed to identify differential gene expression and related signaling pathways. RESULTS: ANLN E841K was screened from three unrelated families. ANLN E841K occurred in the functional domain and was predicted to be harmful. The pathological type of A-II-1 renal biopsy was minimal change disease, and the expression of ANLN was decreased. Cells in the mutation group showed disordered cytoskeleton, faster cell migration, decreased adhesion, increased endocytosis, slower proliferation, increased apoptosis, and weakened interaction with CD2 association protein. ANLNpodKO mice exhibited more obvious proteinuria, more severe mesangial proliferation, glomerular atrophy, foot process fusion, and increased tissue apoptosis levels than ANLNflox/flox mice after tail vein injection of adriamycin. Upregulated differentially expressed genes in cells of the mutation group were mainly enriched in the PI3K-AKT pathway. CONCLUSION: The novel mutation known as ANLN E841K affected the function of the ANLN protein by activating the PI3K/AKT/mTOR/apoptosis pathway, thus resulting in structural and functional changes in podocytes. Our study indicated that ANLN played a vital role in maintaining the normal function of podocytes. Video Abstract.


Asunto(s)
Proteínas de Microfilamentos , Síndrome Nefrótico , Podocitos , Animales , Humanos , Ratones , Mutación/genética , Síndrome Nefrótico/genética , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Podocitos/patología , Proteinuria , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Microfilamentos/genética
20.
J Vis Exp ; (200)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37929996

RESUMEN

Mesenchymal stromal cells (MSCs) are adult pluripotent stem cells which have been widely used in regenerative medicine. As somatic tissue-derived MSCs are restricted by limited donation, quality variations, and biosafety, the past 10 years have seen a great rise in efforts to generate MSCs from human induced pluripotent stem cells (hiPSCs). Past and recent efforts in the differentiation of hiPSCs into MSCs have been centered around two culture methodologies: (1) the formation of embryoid bodies (EBs) and (2) the use of monolayer culture. This protocol describes these two representative methods in deriving MSC from hiPSCs. Each method presents its advantages and disadvantages, including time, cost, cell proliferation ability, the expression of MSC markers, and their capability of differentiation in vitro. This protocol demonstrates that both methods can derive mature and functional MSCs from hiPSCs. The monolayer method is characterized by lower cost, simpler operation, and easier osteogenic differentiation, while the EB method is characterized by lower time consumption.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Adulto , Humanos , Osteogénesis , Diferenciación Celular , Cuerpos Embrioides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...