Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolomics ; 20(4): 74, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980520

RESUMEN

BACKGROUND AND AIMS: Biopterins, including tetrahydrobiopterin (BH4), dihydrobiopterin (BH2), and biopterin (B), were crucial enzyme cofactors in vivo. Despite their recognized clinical significance, there remain notable research gaps and controversies surrounding experimental outcomes. This study aims to clarify the biopterins-related issues, including analytical art, physiological intervals, and pathophysiological implications. MATERIALS AND METHODS: A novel LC-MS/MS method was developed to comprehensively profile biopterins in plasma, utilizing chemical derivatization and cold-induced phase separation. Subsequently, apparently healthy individuals were enrolled to investigate the physiological ranges. And the relationships between biopterins and biochemical indicators were analyzed to explore the pathophysiological implications. RESULTS: The developed method was validated as reliable for detecting biopterins across the entire physiological range. Timely anti-oxidation was found to be essential for accurate assessment of biopterins. The observed overall mean ± SDs levels were 3.51 ± 0.94, 1.54 ± 0.48, 2.45 ± 0.84 and 5.05 ± 1.14 ng/mL for BH4, BH2, BH4/BH2 and total biopterins. The status of biopterins showed interesting correlations with age, gender, hyperuricemia and overweight. CONCLUSION: In conjunction with proper anti-oxidation, the newly developed method enables accurate determination of biopterins status in plasma. The observed physiological intervals and pathophysiological implications provide fundamental yet inspiring support for further clinical researches.


Asunto(s)
Biopterinas , Espectrometría de Masas en Tándem , Humanos , Biopterinas/análogos & derivados , Biopterinas/sangre , Biopterinas/metabolismo , Femenino , Masculino , Adulto , Espectrometría de Masas en Tándem/métodos , Persona de Mediana Edad , Cromatografía Liquida/métodos , Adulto Joven , Anciano , Biomarcadores/sangre
2.
Front Immunol ; 15: 1401967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915399

RESUMEN

Glioblastoma (GBM) is a highly malignant, invasive, and poorly prognosed brain tumor. Unfortunately, active comprehensive treatment does not significantly prolong patient survival. With the deepening of research, it has been found that gut microbiota plays a certain role in GBM, and can directly or indirectly affect the efficacy of immune checkpoint inhibitors (ICIs) in various ways. (1) The metabolites produced by gut microbiota directly affect the host's immune homeostasis, and these metabolites can affect the function and distribution of immune cells, promote or inhibit inflammatory responses, affect the phenotype, angiogenesis, inflammatory response, and immune cell infiltration of GBM cells, thereby affecting the effectiveness of ICIs. (2) Some members of the gut microbiota may reverse T cell function inhibition, increase T cell anti-tumor activity, and ultimately improve the efficacy of ICIs by targeting specific immunosuppressive metabolites and cytokines. (3) Some members of the gut microbiota directly participate in the metabolic process of drugs, which can degrade, transform, or produce metabolites, affecting the effective concentration and bioavailability of drugs. Optimizing the structure of the gut microbiota may help improve the efficacy of ICIs. (4) The gut microbiota can also regulate immune cell function and inflammatory status in the brain through gut brain axis communication, indirectly affecting the progression of GBM and the therapeutic response to ICIs. (5) Given the importance of gut microbiota for ICI therapy, researchers have begun exploring the use of fecal microbiota transplantation (FMT) to transplant healthy or optimized gut microbiota to GBM patients, in order to improve their immune status and enhance their response to ICI therapy. Preliminary studies suggest that FMT may enhance the efficacy of ICI therapy in some patients. In summary, gut microbiota plays a crucial role in regulating ICIs in GBM, and with a deeper understanding of the relationship between gut microbiota and tumor immunity, it is expected to develop more precise and effective personalized ICI therapy strategies for GBM, in order to improve patient prognosis.


Asunto(s)
Neoplasias Encefálicas , Microbioma Gastrointestinal , Glioblastoma , Inhibidores de Puntos de Control Inmunológico , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Glioblastoma/inmunología , Glioblastoma/tratamiento farmacológico , Glioblastoma/terapia , Glioblastoma/microbiología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/microbiología , Animales , Eje Cerebro-Intestino/inmunología , Trasplante de Microbiota Fecal , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
3.
Curr Pharm Des ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38910483

RESUMEN

BACKGROUND: Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a rapidly progressive form of glomerulonephritis for which effective therapeutic drugs are currently lacking, and its underlying mechanism remains unclear. AIMS: This study aimed to investigate new treatment options for AAV through a combination of bioinformatics analysis and cell molecular experiments. METHODS: The research utilized integrated bioinformatics analysis to identify genes with differential expression, conduct enrichment analysis, and pinpoint hub genes associated with AAV. Potential therapeutic compounds for AAV were identified using Connectivity Map and molecular docking techniques. In vitro experiments were then carried out to examine the impact and mechanism of apilimod on endothelial cell injury induced by MPO-ANCA-positive IgG. RESULTS: The findings revealed a set of 374 common genes from differentially expressed genes and key modules of WGCNA, which were notably enriched in immune and inflammatory response processes. A proteinprotein interaction network was established, leading to the identification of 10 hub genes, including TYROBP, PTPRC, ITGAM, KIF20A, CD86, CCL20, GAD1, LILRB2, CD8A, and COL5A2. Analysis from Connectivity Map and molecular docking suggested that apilimod could serve as a potential therapeutic cytokine inhibitor for ANCA-GN based on the hub genes. In vitro experiments demonstrated that apilimod could mitigate tight junction disruption, endothelial cell permeability, LDH release, and endothelial activation induced by MPO-ANCA-positive IgG. Additionally, apilimod treatment led to a significant reduction in the expression of proteins involved in the TLR4/NF-κB and NLRP3 inflammasome-mediated pyroptosis pathways. CONCLUSION: This study sheds light on the potential pathogenesis of AAV and highlights the protective role of apilimod in mitigating MPO-ANCA-IgG-induced vascular endothelial cell injury by modulating the TLR4/ NF-kB and NLRP3 inflammasome-mediated pyroptosis pathway. These findings suggest that apilimod may hold promise as a treatment for AAV and warrant further investigation.

4.
Am J Primatol ; 86(8): e23636, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824636

RESUMEN

As a central topic in Behavioral Ecology, animal space use involves dynamic responses to social and ecological factors. We collared 22 rhesus macaques (Macaca mulatta) from six groups on Neilingding Island, China, and collected 80,625 hourly fixes over a year. Using this high-resolution location data set, we quantified the macaques' space use at the individual level and tested the ecological constraints model while considering various environmental and human interfering factors. As predicted by the ecological constraints model, macaques in larger groups had longer daily path lengths (DPLs) and larger home ranges. We found an inverted U-shape relationship between mean daily temperatures and DPLs, indicating that macaques traveled farther on mild temperature days, while they decreased DPLs when temperatures were too high or too low. Anthropogenic food subsidies were positively correlated to DPLs, while the effect of rainfall was negative. Macaques decreased their DPLs and core areas when more flowers and less leaves were available, suggesting that macaques shifted their space use patterns to adapt to the seasonal differences in food resources. By applying GPS collars on a large number of individuals living on a small island, we gained valuable insights into within-group exploitation competition in wild rhesus macaques.


Asunto(s)
Sistemas de Información Geográfica , Fenómenos de Retorno al Lugar Habitual , Macaca mulatta , Animales , Macaca mulatta/fisiología , China , Masculino , Femenino , Ecosistema , Temperatura , Estaciones del Año , Islas
5.
ACS Appl Bio Mater ; 7(6): 4051-4061, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38790078

RESUMEN

Hyperlipidemia has been a huge challenge to global health, leading to the cardiovascular disease, hypertension, and diabetes. Atorvastatin calcium (AC), a widely prescribed drug for hyperlipidemia, faces huge challenges with oral administration due to poor water solubility and hepatic first-pass effects, resulting in low therapeutic efficacy. In this work, we designed and developed a hybrid microneedle (MN) patch system constructed with soluble poly(vinyl alcohol) (PVA) and AC-loaded polymeric micelles (AC@PMs) for transdermal delivery of AC to enhance the hyperlipidemia therapy. We first prepared various AC@PM formulations self-assembled from mPEG-PLA and mPEG-PLA-PEG block copolymers using a dialysis method and evaluated the physicochemical properties in combination with experiment skills and dissipative particle dynamics (DPD) simulations. Then, we encapsulated the AC@PMs into the PVA MN patch using a micromold filling method, followed by characterizing the performances, especially the structural stability, mechanical performance, and biosafety. After conducting in vivo experiments using a hyperlipidemic rat model, our findings revealed that the hybrid microneedle-mediated administration exhibited superior therapeutic efficacy when compared to oral delivery methods. In summary, we have successfully developed a hybrid microneedle (MN) patch system that holds promising potential for the efficient transdermal delivery of hydrophobic drugs.


Asunto(s)
Administración Cutánea , Atorvastatina , Hiperlipidemias , Micelas , Agujas , Hiperlipidemias/tratamiento farmacológico , Animales , Atorvastatina/química , Atorvastatina/administración & dosificación , Atorvastatina/farmacología , Ratas , Tamaño de la Partícula , Materiales Biocompatibles/química , Polímeros/química , Ensayo de Materiales , Ratas Sprague-Dawley , Sistemas de Liberación de Medicamentos , Masculino
6.
Ren Fail ; 46(1): 2338932, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38616174

RESUMEN

PURPOSE: This study aimed to elucidate the role of USP25 in a mouse model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). METHODS: USP25-deficient anti-GBM GN mice were generated, and their nephritis progression was monitored. Naïve CD4+ T cells were isolated from spleen lymphocytes and stimulated to differentiate into Th1, Th2, and Th17 cells. This approach was used to investigate the impact of USP25 on CD4+ T lymphocyte differentiation in vitro. Furthermore, changes in USP25 expression were monitored during Th17 differentiation, both in vivo and in vitro. RESULTS: USP25-/- mice with anti-GBM GN exhibited accelerated renal function deterioration, increased infiltration of Th1 and Th17 cells, and elevated RORγt transcription. In vitro experiments demonstrated that USP25-/- CD4+ T lymphocytes had a higher proportion for Th17 cell differentiation and exhibited higher RORγt levels upon stimulation. Wild-type mice with anti-GBM GN showed higher USP25 levels compared to healthy mice, and a positive correlation was observed between USP25 levels and Th17 cell counts. Similar trends were observed in vitro. CONCLUSION: USP25 plays a crucial role in mitigating renal histopathological and functional damage during anti-GBM GN in mice. This protective effect is primarily attributed to USP25's ability to inhibit the differentiation of naïve CD4+ T cells into Th17 cells. The underlying mechanism may involve the downregulation of RORγt. Additionally, during increased inflammatory responses or Th17 cell differentiation, USP25 expression is activated, forming a negative feedback regulatory loop that attenuates immune activation.


Asunto(s)
Autoanticuerpos , Glomerulonefritis , Nefritis , Animales , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Células Th17 , Retroalimentación , Diferenciación Celular
7.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593897

RESUMEN

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.


Asunto(s)
Atorvastatina , Interacciones Hidrofóbicas e Hidrofílicas , Lactatos , Nanopartículas , Polietilenglicoles , Atorvastatina/química , Polietilenglicoles/química , Nanopartículas/química , Portadores de Fármacos/química , Micelas , Poliésteres/química , Composición de Medicamentos , Simulación de Dinámica Molecular
8.
Heliyon ; 10(5): e27019, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495169

RESUMEN

Objective: Genital herpes, primarily caused by HSV-2 infection, remains a widespread sexually transmitted ailment. Extracellular vesicles play a pivotal role in host-virus confrontation. Recent research underscores the influence of Chinese herbal prescriptions on extracellular vesicle production and composition. This study aims to probe the impact of JieZe-1 (JZ-1) on extracellular vesicle components, elucidating its mechanisms against HSV-2 infection via extracellular vesicles. Methods: The JZ-1's anti-HSV-2 effects were assessed using CCK-8 assay. Extracellular vesicles were precisely isolated utilizing ultracentrifugation and subsequently characterized through TEM, NTA, and Western Blot analyses. The anti-HSV-2 activity of extracellular vesicles was gauged using CCK-8, Western Blot, and immunofluorescence. Additionally, high-throughput sequencing was employed to detect miRNAs from extracellular vesicles, unraveling the potential antiviral mechanisms of JZ-1. Results: Antiviral efficacy of JZ-1 was shown in VK2/E6E7, HeLa, and Vero cells. The samples extracted from cell supernatant by ultracentrifugation were identified as extracellular vesicles. In VK2/E6E7 cells, extracellular vesicles from JZ-1 group enhanced cell survival rates and diminished the expression of intracellular viral protein gD, contrasting with the inert effect of control group vesicles. Extracellular vesicles from JZ-1 treated Vero cells demonstrated a weaker yet discernible anti-HSV-2 effect. Conversely, extracellular vesicles of HeLa cells exhibited no anti-HSV-2 effect from either group. High-throughput sequencing of VK2/E6E7 cell extracellular vesicles unveiled significant upregulation of miRNA-101, miRNA-29a, miRNA-29b, miRNA-29c, and miRNA-637 in JZ-1 group vesicles. KEGG pathway analysis suggested that these miRNAs may inhibit PI3K/AKT/mTOR signaling pathway and induce autophagy of host cells to protect against HSV-2. Western blot confirmed the induction of autophagy and inhibition of AKT/mTOR in VK2/E6E7 cells with JZ-1 group extracellular vesicles treatment. Conclusion: JZ-1 had an anti-HSV-2 efficacy. After JZ-1 stimulation, VK2/E6E7 cells secreted extracellular vesicles which protect host cells from HSV-2 infection. High-throughput sequencing showed that these extracellular vesicles contained a large number of miRNAs targeting PI3K/AKT/mTOR pathway. JZ-1 group extracellular vesicles could inhibit the activation of AKT/mTOR pathway and induce the host cells autophagy.

9.
Food Chem X ; 22: 101262, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38450385

RESUMEN

The effects of constant and variable temperature hot-air drying methods on drying time, colors, nutrients, and volatile compounds of three chili pepper varieties were investigated in this study. Overall, the variable temperature drying could facilitate the removal of water, preserve surface color, and reduce the loss of total sugar, total acid, fat and capsaicin contents. Electronic-nose (E-nose) and gas chromatography-ion mobility spectroscopy (GC-IMS) analyses found that aldehydes, ketones, alcohols and esters contributed to the aroma of chili peppers. The drying process led to an increase in acids, furans and sulfides contents, while decreasing alcohols, esters and olefins levels. In addition, the three chili pepper varieties displayed distinct physical characteristics, drying times, chromatic values, nutrients levels and volatile profiles during dehydration. This study suggests variable temperature drying is a practical approach to reduce drying time, save costs, and maintain the commercial appeal of chili peppers.

10.
Int J Surg ; 110(5): 2950-2962, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445452

RESUMEN

BACKGROUND: Early identification of patients at high-risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery using machine learning algorithms. The authors also evaluated the predictive performance of models that included only preoperative variables or only important predictors. MATERIALS AND METHODS: Adult patients undergoing noncardiac surgery were retrospectively included in the study (76 457 patients in the discovery cohort and 11 910 patients in the validation cohort). AKI was determined using the KDIGO criteria. The prediction model was developed using 87 variables (56 preoperative variables and 31 intraoperative variables). A variety of machine learning algorithms were employed to develop the model, including logistic regression, random forest, extreme gradient boosting, and gradient boosting decision trees. The performance of different models was compared using the area under the receiver operating characteristic curve (AUROC). Shapley Additive Explanations (SHAP) analysis was employed for model interpretation. RESULTS: The patients in the discovery cohort had a median age of 52 years (IQR: 42-61 years), and 1179 patients (1.5%) developed AKI after surgery. The gradient boosting decision trees algorithm showed the best predictive performance using all available variables, or only preoperative variables. The AUROCs were 0.849 (95% CI: 0.835-0.863) and 0.828 (95% CI: 0.813-0.843), respectively. The SHAP analysis showed that age, surgical duration, preoperative serum creatinine, and gamma-glutamyltransferase, as well as American Society of Anesthesiologists physical status III were the most important five features. When gradually reducing the features, the AUROCs decreased from 0.852 (including the top 40 features) to 0.839 (including the top 10 features). In the validation cohort, the authors observed a similar pattern regarding the models' predictive performance. CONCLUSIONS: The machine learning models the authors developed had satisfactory predictive performance for identifying high-risk postoperative AKI patients. Furthermore, the authors found that model performance was only slightly affected when only preoperative variables or only the most important predictive features were included.


Asunto(s)
Lesión Renal Aguda , Aprendizaje Automático , Complicaciones Posoperatorias , Humanos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Persona de Mediana Edad , Estudios Retrospectivos , Femenino , Masculino , Adulto , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Medición de Riesgo/métodos , Estudios de Cohortes , Curva ROC , Factores de Riesgo , Anciano , Algoritmos , Procedimientos Quirúrgicos Operativos/efectos adversos
11.
Exp Ther Med ; 27(3): 98, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356671

RESUMEN

With the rapid development of digital research in clinical orthopedics, the efficacy and safety of splint fixation can be better evaluated through biomechanical analysis based on a three-dimensional (3D) finite element model. It is essential to address the current gap in understanding the biomechanical implications of anatomical splint fixation for Colles fractures. By employing advanced 3D finite element analysis, the present study aimed to provide a comprehensive evaluation, offering valuable insights that can contribute to enhancing the effectiveness of anatomical splint fixation in the clinical management of Colles fractures. The 3D finite element models of the forearm and hand were constructed using Mimics 15.0 according to data from computed tomography of a patient with a Colles fracture. After the validity of the model was verified, the corresponding material properties of the models were adjusted to simulate a Colles fracture. Subsequently, the reduction functions, such as radial inclination and ulnar deviation, of the simulated fracture were completed and the mechanical changes of the tissues surrounding the fracture were calculated. Anatomical splints were then placed on the surfaces of the 3D finite element models of Colles fractures at various positions to analyze the changes in the stress cloud diagram, such as for the soft tissue and anatomical splints. In the present study, the constructed 3D finite element models were accurate and valid. The maximum stress of the anatomical splints and soft tissues was 2.346 and 0.106 MPa in pronation, 1.780 and 0.069 MPa in median rotation and 3.045 and 0.057 MPa in supination, respectively. Splint stress reached the highest level in supination and soft tissue stress achieved the highest level in pronation. The peak of splint stress occurred during supination, which contrasts to the peak of soft tissue stress observed in pronation, suggesting splint fixation median rotation can effectively avoid compression of the local soft tissue.

12.
RSC Adv ; 14(1): 67-74, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173601

RESUMEN

To obtain high-performance disperse dyes, a series of azo disperse dyes containing different kinds of ester groups based on benzisothiazole were synthesized by the coupling reaction of diazotization of 3-amino-5-nitro [2,1] benzisothiazole with N-substituted aniline compounds bearing different ester moieties. The structures of the synthesized dyes were evaluated using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance techniques (1H-NMR), and MS analysis. UV-Vis spectrophotometry methods were applied to study absorption maxima, molar extinction coefficients, and solvatochromic behaviors of the dyes, and time-dependent density functional theory (TD-DFT) simulations were applied to reveal the nature of the absorption spectrum properties. Polyester fabrics were colored using a high-temperature dyeing method under pressure, and the dyed fabrics exhibited deep and bright intense blue hues. In addition, excellent fastness properties, including washing fastness, sublimation fastness, rubbing fastness, and light fastness, were achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...