Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Gene Ther ; 25(3): 189-98, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24251946

RESUMEN

Dopamine and serotonin are produced by distinct groups of neurons in the brain, and gene therapies other than direct injection have not been attempted to correct congenital deficiencies in such neurotransmitters. In this study, we performed gene therapy to treat knock-in mice with dopamine and serotonin deficiencies caused by a mutation in the aromatic L-amino acid decarboxylase (AADC) gene (Ddc(KI) mice). Intracerebral ventricular injection of neonatal mice with an adeno-associated virus (AAV) serotype 9 (AAV9) vector expressing the human AADC gene (AAV9-hAADC) resulted in widespread AADC expression in the brain. Without treatment, 4-week-old Ddc(KI) mice exhibited whole-brain homogenate dopamine and serotonin levels of 25% and 15% of normal, respectively. After gene therapy, the levels rose to 100% and 40% of normal, respectively. The gene therapy improved the growth rate and survival of Ddc(KI) mice and normalized their hindlimb clasping and cardiovascular dysfunctions. The behavioral abnormalities of the Ddc(KI) mice were partially corrected, and the treated Ddc(KI) mice were slightly more active than normal mice. No immune reactions resulted from the treatment. Therefore, a congenital neurotransmitter deficiency can be treated safely through inducing widespread expression of the deficient gene in neonatal mice.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático/genética , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/terapia , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Animales , Animales Recién Nacidos , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Conducta Animal , Presión Sanguínea , Peso Corporal , Encéfalo/inmunología , Encéfalo/metabolismo , Encefalopatías Metabólicas Innatas/mortalidad , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/metabolismo , Humanos , Inyecciones Intraventriculares , Ratones , Ratones Noqueados , Actividad Motora , Neurotransmisores/metabolismo , Distribución Tisular
2.
Neurobiol Dis ; 52: 177-90, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23275025

RESUMEN

Aromatic l-amino acid decarboxylase (AADC) is responsible for the syntheses of dopamine and serotonin. Children with AADC deficiency exhibit compromised development, particularly with regard to their motor functions. Currently, no animal model of AADC deficiency exists. We inserted an AADC gene mutation (IVS6+4A>T) and a neomycin-resistance gene into intron 6 of the mouse AADC (Ddc) gene. In the brains of homozygous knock-in (KI) mice (Ddc(IVS6/IVS6)), AADC mRNA lacked exon 6, and AADC activity was <0.3% of that in wild-type mice. Half of the KI mice were born alive but grew poorly and exhibited severe dyskinesia and hindlimb clasping after birth. Two-thirds of the live-born KI mice survived the weaning period, with subsequent improvements in their growth and motor functions; however, these mice still displayed cardiovascular dysfunction and behavioral problems due to serotonin deficiencies. The brain dopamine levels in the KI mice increased from 9.39% of the levels in wild-type mice at 2weeks of age to 37.86% of the levels in wild-type mice at 8weeks of age. Adult KI mice also exhibited an exaggerated response to apomorphine and an elevation of striatal c-Fos expression, suggesting post-synaptic adaptations. Therefore, we generated an AADC deficient mouse model, in which compensatory regulation allowed the mice to survive to adulthood. This mouse model will be useful both for developing gene therapies for AADC deficiency and for designing treatments for diseases associated with neurotransmitter deficiency.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Dopamina/metabolismo , Discinesias/metabolismo , Neostriado/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Descarboxilasas de Aminoácido-L-Aromático/deficiencia , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Modelos Animales de Enfermedad , Dopamina/genética , Discinesias/genética , Técnicas de Sustitución del Gen , Ratones
3.
J Cell Biochem ; 109(4): 663-71, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20091742

RESUMEN

Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor-beta receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)-beta1, as mannitol (27.5 mM) significantly enhanced the TGF-beta1-induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF-beta RII at 336 residues in a time (0-24 h) and dose (5.5-38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF-beta RI in a dose- and time-course dependent manner. These observations may be closely related to decreased catabolism of TGF-beta RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF-beta RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half-life and inhibited the protein level of TGF-beta RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF-beta receptors by retarding proteasomal degradation of TGF-beta RI. This study clarifies the mechanism underlying hyperosmotic-induced renal fibrosis in renal distal tubule cells.


Asunto(s)
Susceptibilidad a Enfermedades/metabolismo , Fibrosis/etiología , Enfermedades Renales/patología , Túbulos Renales/patología , Concentración Osmolar , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Línea Celular , Perros , Fibrosis/patología , Enfermedades Renales/etiología , Manitol/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Receptor Tipo I de Factor de Crecimiento Transformador beta , Proteína smad7/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...