Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 326(4): F584-F599, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299214

RESUMEN

Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.


Asunto(s)
Cardiomiopatías , Insuficiencia Renal Crónica , Animales , Ratones , Factor-23 de Crecimiento de Fibroblastos , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/metabolismo , Biomarcadores , Fosfatos , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/complicaciones
2.
Nat Commun ; 14(1): 6531, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848446

RESUMEN

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Asunto(s)
Adiponectina , Gluconeogénesis , Riñón , Animales , Masculino , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ácido Pirúvico/metabolismo
3.
Am J Physiol Renal Physiol ; 324(1): F106-F123, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395384

RESUMEN

Vascular endothelial growth factor (VEGF) and its cognate receptor (VEGFR2) system are crucial for cell functions associated with angiogenesis and vasculogenesis. Klotho contributes to vascular health maintenance in the kidney and other organs in mammals, but it is unknown whether renoprotection by Klotho is dependent on VEGF/VEGFR2 signaling. We used heterozygous VEGFR2-haploinsufficient (VEGFR2+/-) mice resulting from heterozygous knockin of green fluorescent protein in the locus of fetal liver kinase 1 encoding VEGFR2 to test the interplay of Klotho, phosphate, and VEGFR2 in kidney function, the vasculature, and fibrosis. VEGFR2+/- mice displayed downregulated VEGF/VEGFR2 signaling in the kidney, lower density of peritubular capillaries, and accelerated kidney fibrosis, all of which were also found in the homozygous Klotho hypomorphic mice. High dietary phosphate induced higher plasma phosphate, greater peritubular capillary rarefaction, and more kidney fibrosis in VEGFR2+/- mice compared with wild-type mice. Genetic overexpression of Klotho significantly attenuated the elevated plasma phosphate, kidney dysfunction, peritubular capillary rarefaction, and kidney fibrosis induced by a high-phosphate diet in wild-type mice but only modestly ameliorated these changes in the VEGFR2+/- background. In cultured endothelial cells, VEGFR2 inhibition reduced free VEGFR2 but enhanced its costaining of an endothelial marker (CD31) and exacerbated phosphotoxicity. Klotho protein maintained VEGFR2 expression and attenuated high phosphate-induced cell injury, which was reduced by VEGFR2 inhibition. In conclusion, normal VEGFR2 function is required for vascular integrity and for Klotho to exert vascular protective and antifibrotic actions in the kidney partially through the regulation of VEGFR2 function.NEW & NOTEWORTHY This research paper studied the interplay of vascular endothelial growth factor receptor type 2 (VEGFR2), high dietary phosphate, and Klotho, an antiaging protein, in peritubular structure and kidney fibrosis. Klotho protein was shown to maintain VEGFR2 expression in the kidney and reduce high phosphate-induced cell injury. However, Klotho cytoprotection was attenuated by VEGFR2 inhibition. Thus, normal VEGFR2 function is required for vascular integrity and Klotho to exert vascular protective and antifibrotic actions in the kidney.


Asunto(s)
Citoprotección , Enfermedades Renales , Riñón , Proteínas Klotho , Rarefacción Microvascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Ratones , Células Endoteliales/metabolismo , Fibrosis , Riñón/irrigación sanguínea , Riñón/patología , Enfermedades Renales/patología , Rarefacción Microvascular/patología , Fosfatos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Proteínas Klotho/genética , Proteínas Klotho/metabolismo
4.
Hypertension ; 79(8): 1824-1834, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35652337

RESUMEN

BACKGROUND: SGLT2i (sodium-glucose cotransporter 2 inhibitor), a class of anti-diabetic medications, is shown to reduce blood pressure (BP) in hypertensive patients with type 2 diabetes. Mechanisms underlying this action are unknown but SGLT2i-induced sympathoinhibition is thought to play a role. Whether SGLT2i reduces BP and sympathetic nerve activity (SNA) in a nondiabetic prehypertension model is unknown. METHODS: Accordingly, we assessed changes in conscious BP using radiotelemetry and alterations in mean arterial pressure and renal SNA during simulated exercise in nondiabetic spontaneously hypertensive rats during chronic administration of a diet containing dapagliflozin (0.5 mg/kg per day) versus a control diet. RESULTS: We found that dapagliflozin had no effect on fasting blood glucose, insulin, or hemoglobin A1C levels. However, dapagliflozin reduced BP in young (8-week old) spontaneously hypertensive rats as well as attenuated the age-related rise in BP in adult spontaneously hypertensive rat up to 17-weeks of age. The rises in mean arterial pressure and renal SNA during simulated exercise (exercise pressor reflex activation by hindlimb muscle contraction) were significantly reduced after 4 weeks of dapagliflozin (Δmean arterial pressure: 10±7 versus 25±14 mm Hg, Δrenal SNA: 31±17% versus 68±39%, P<0.05). Similarly, rises in mean arterial pressure and renal SNA during mechanoreflex stimulation by passive hindlimb stretching were also attenuated by dapagliflozin. Heart weight was significantly decreased in dapagliflozin compared with the control group. CONCLUSIONS: These data demonstrate a novel role for SGLT2i in reducing resting BP as well as the activity of skeletal muscle reflexes, independent of glycemic control. Our study may have important clinical implications for preventing hypertension and hypertensive heart disease in young prehypertensive individuals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Animales , Compuestos de Bencidrilo , Presión Sanguínea/fisiología , Glucósidos , Hipertensión/tratamiento farmacológico , Contracción Muscular/fisiología , Ratas , Ratas Endogámicas SHR , Sistema Nervioso Simpático
5.
Adv Exp Med Biol ; 1362: 55-72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35288873

RESUMEN

Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.


Asunto(s)
Senescencia Celular , Fosfatos , Envejecimiento/metabolismo , Senescencia Celular/fisiología , Regulación hacia Abajo , Humanos , Fosfatos/metabolismo , Regulación hacia Arriba
6.
Kidney Int ; 101(1): 63-78, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34736972

RESUMEN

Autophagy regulator beclin 1 activity determines the severity of kidney damage induced by ischemia reperfusion injury, but its role in kidney recovery and fibrosis are unknown and its therapeutic potentials have not been tested. Here, we explored beclin 1 effects on kidney fibrosis in three models of acute kidney injury (AKI)-ischemia reperfusion injury, cisplatin kidney toxicity, and unilateral ureteric obstruction in mouse strains with three levels of beclin 1 function: normal (wild type), low (heterozygous global deletion of beclin 1, Becn1+/-), and high beclin 1 activity (knockin gain-of-function mutant Becn1, Becn1FA). Fourteen days after AKI induction, heterozygous mice had more, but knockin mice had less kidney fibrosis than wild-type mice did. One day after ischemia reperfusion injury, heterozygous pan-kidney tubular Becn1 null mice had more severe kidney damage than homozygous distal tubular Becn1 null mice did, which was similar to the wild-type mice, implying that proximal tubular beclin 1 protects the kidney against ischemia reperfusion injury. By 14 days, both pan-kidney heterozygous Becn1 null and distal tubular homozygous Becn1 null mice had poorer kidney recovery than wild-type mice did. Injection of beclin 1 peptides increased cell proliferation in kidney tubules in normal mice. Beclin 1 peptides injection either before or after (2-5 days) ischemia reperfusion injury protected the kidney from injury and suppressed kidney fibrosis. Thus, both endogenous beclin 1 protein expression in kidney tubules and exogenous beclin 1 peptides are kidney protective via attenuation of acute kidney damage, promotion of cell proliferation, and inhibition of kidney fibrosis, consequently improving kidney recovery post-AKI. Hence, exogenous beclin 1 peptide may be a potential new therapy for AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/inducido químicamente , Animales , Beclina-1/genética , Beclina-1/metabolismo , Fibrosis , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/patología
7.
FASEB Bioadv ; 3(7): 531-540, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34258522

RESUMEN

Alpha-Klotho is a multi-functional protein essential for maintenance of a myriad of cell functions. αKlotho is a single transmembrane protein with a large extracellular segment consisting of two domains (termed Kl1 and Kl2) which is shed into the extracellular fluid by proteolytic cleavage to furnish circulating soluble αKlotho. Based on cDNA sequence, an alternatively spliced mRNA is predicted to translate to a putative soluble αKlotho protein in mouse and human with only the Kl1 domain that represents a "spliced αKlotho Kl1" (spKl1) and is released from the cell without membrane targeting or cleavage. The existence of this protein remains in silico for two decades. We generated a novel antibody (anti-spE15) against the 15 amino acid epitope (E15; VSPLTKPSVGLLLPH) which is not present in Kl1 or full-length αKlotho and validated its specific reactivity against spKl1 in vitro. Using anti-spE15 and two well-established anti-αKlotho monoclonal antibodies, we performed immunoblots, immunoprecipitation, and immunohistochemistry to investigate for expression of spKl1 in the mouse brain. We found anti-spE15 labeling in mouse brain but were not able to see co-labelling of Kl1 and spE15 epitopes on the same protein, which is the pre-requisite for the existence of a spKl1 polypeptide, indicating that anti-spE15 likely binds to another protein other than the putative spKl1. In isolated choroid plexus from mouse brain, we found strong staining with anti-spE15, but did not find the spliced αKlotho transcript. We conclude that using reliable reagents and inclusion of proper controls, there is no evidence of the spKl1 protein in the mouse brain.

8.
Cells ; 10(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915953

RESUMEN

High phosphate contributes to uremic cardiomyopathy. Abnormal autophagy is associated with the development and progression of heart disease. What is unknown is the effects of phosphate on autophagy and whether the ill effects of phosphate on cardiomyocytes are mediated by low autophagy. High (2.0% w/w)-phosphate diet reduced LC3 puncta in cardiomyocytes and ratio of LC3 II/I and increased p62 protein, indicating that autophagy activity was suppressed. Mice with cardiomyocyte-specific deletion of autophagy-related protein 5 (H-atg5-/-) had reduced autophagy only in the heart, developed cardiac dysfunction with hypertrophy and fibrosis, and had a short lifespan. When H-atg5-/- mice were fed a high-phosphate diet, they developed more apoptosis in cardiomyocytes, more severe cardiac remodeling, and shorter lifespan than normal phosphate-fed H-atg5-/- mice, indicating that cardiac phosphotoxicity is imparted independently of atg5. In conclusion, although high phosphate suppresses autophagy, high phosphate and low autophagy independently trigger and additionally amplify cardiac remodeling and dysfunction.


Asunto(s)
Autofagia , Dieta , Corazón/fisiopatología , Fosfatos/efectos adversos , Remodelación Ventricular , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Cardiomegalia/patología , Fibrosis , Corazón/efectos de los fármacos , Riñón/patología , Longevidad , Ratones Transgénicos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Remodelación Ventricular/efectos de los fármacos
9.
Front Pharmacol ; 11: 1273, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973510

RESUMEN

Cellular senescence is an irreversible cell growth arrest and is associated with aging and age-related diseases. High plasma phosphate (Pi) and deficiency of Klotho contribute to aging and kidney fibrosis, a pathological feature in the aging kidney and chronic kidney disease. This study examined the interactive role of Pi and Klotho in kidney senescence and fibrosis. Homozygous Klotho hypomorphic mice had high plasma Pi, undetectable Klotho in plasma and kidney, high senescence with massive collagen accumulation in kidney tubules, and fibrin deposits in peritubular capillaries. To examine the Pi effect on kidney senescence, a high (2%) Pi diet was given to wild-type mice. One week of high dietary Pi mildly increased plasma Pi, and upregulated kidney p16/p21 expression, but did not significantly decrease Klotho. Two weeks of high Pi intake led to increase in plasminogen activator inhibitor (PAI)-1, and decrease in kidney Klotho, but still without detectable increase in kidney fibrosis. More prolonged dietary Pi for 12 weeks exacerbated kidney senescence and fibrosis; more so in heterozygous Klotho hypomorphic mice compared to wild-type mice, and in mice with chronic kidney disease (CKD) on high Pi diet compared to CKD mice fed a normal Pi diet. In cultured kidney tubular cells, high Pi directly induced cellular senescence, injury and epithelial-mesenchymal transition, and enhanced H2O2-induced cellular senescence and injury, which were abrogated by Klotho. Fucoidan, a bioactive molecule with multiple biologic functions including senescence inhibition, blunted Pi-induced cellular senescence, oxidation, injury, epithelial-mesenchymal transition, and senescence-associated secretary phenotype. In conclusion, high Pi activates senescence through distinct but interconnected mechanisms: upregulating p16/p21 (early), and elevating plasminogen activator inhibitor-1 and downregulating Klotho (late). Klotho may be a promising agent to attenuate senescence and ameliorate age-associated, and Pi-induced kidney degeneration such as kidney fibrosis.

10.
Nephron ; 144(12): 665-672, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32841947

RESUMEN

Fibroblast growth factor (FGF) 23 and αKlotho are circulating mineral regulatory substances that also have a very diverse range of actions. Acute kidney injury (AKI) is a state of high FGF23 and low αKlotho. Clinical association data for FGF23 are strong, but the basic pathobiology of FGF23 in AKI is rather sparse. Conversely, preclinical data supporting a pathogenic role of αKlotho in AKI are strong, but the human data are still being generated. This pair of substances can potentially serve as diagnostic and prognostic biomarkers. FGF23 blockade and αKlotho restoration can have prophylactic and therapeutic utility in AKI. The literature to date is briefly reviewed in this article.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Factores de Crecimiento de Fibroblastos/fisiología , Glucuronidasa/fisiología , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/terapia , Animales , Factor-23 de Crecimiento de Fibroblastos , Humanos , Proteínas Klotho , Pronóstico
11.
Clin J Am Soc Nephrol ; 16(1): 162-176, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32699047

RESUMEN

αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.


Asunto(s)
Lesión Renal Aguda/metabolismo , Enfermedades Cardiovasculares/metabolismo , Proteínas Klotho/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Lesión Renal Aguda/terapia , Animales , Biomarcadores/metabolismo , Fenómenos Fisiológicos Celulares , Expresión Génica/efectos de los fármacos , Terapia Genética , Humanos , Proteínas Klotho/sangre , Proteínas Klotho/deficiencia , Proteínas Klotho/genética , Minerales/metabolismo
12.
JCI Insight ; 5(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31941841

RESUMEN

Autosis is a distinct form of cell death that requires both autophagy genes and the Na+,K+-ATPase pump. However, the relationship between the autophagy machinery and Na+,K+-ATPase is unknown. We explored the hypothesis that Na+,K+-ATPase interacts with the autophagy protein Beclin 1 during stress and autosis-inducing conditions. Starvation increased the Beclin 1/Na+,K+-ATPase interaction in cultured cells, and this was blocked by cardiac glycosides, inhibitors of Na+,K+-ATPase. Increases in Beclin 1/Na+,K+-ATPase interaction were also observed in tissues from starved mice, livers of patients with anorexia nervosa, brains of neonatal rats subjected to cerebral hypoxia-ischemia (HI), and kidneys of mice subjected to renal ischemia/reperfusion injury (IRI). Cardiac glycosides blocked the increased Beclin 1/Na+,K+-ATPase interaction during cerebral HI injury and renal IRI. In the mouse renal IRI model, cardiac glycosides reduced numbers of autotic cells in the kidney and improved clinical outcome. Moreover, blockade of endogenous cardiac glycosides increased Beclin 1/Na+,K+-ATPase interaction and autotic cell death in mouse hearts during exercise. Thus, Beclin 1/Na+,K+-ATPase interaction is increased in stress conditions, and cardiac glycosides decrease this interaction and autosis in both pathophysiological and physiological settings. This crosstalk between cellular machinery that generates and consumes energy during stress may represent a fundamental homeostatic mechanism.


Asunto(s)
Autofagia/fisiología , Beclina-1/metabolismo , Isquemia/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Inanición/metabolismo , Animales , Muerte Celular/fisiología , Células Cultivadas , Glicósidos , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión
13.
Am J Physiol Renal Physiol ; 318(3): F772-F792, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31984794

RESUMEN

Klotho- and beclin 1-driven autophagy extends life. We examined the role of beclin 1 in modifying acute kidney injury (AKI) and whether beclin 1 mediates Klotho's known renoprotective action in AKI. AKI was induced by ischemia-reperfusion injury in mice with different levels of autophagy activity by genetic manipulation: wild-type (WT) mice with normal beclin 1 expression and function, mice with normal beclin 1 levels but high activity through knockin of gain-of-function mutant beclin 1 (Becn1F121A), mice with low beclin 1 levels and activity caused by heterozygous global deletion of beclin 1 (Becn1+/-), or mice with extremely low beclin 1 activity from knockin of the mutant constitutively active beclin 1 inhibitor Bcl-2 (Bcl2AAA). Klotho was increased by transgenic overexpression (Tg-Kl) or recombinant Klotho protein administration. After ischemia-reperfusion injury, Becn1F121A mice (high autophagy) had milder AKI and Becn1+/- and Bcl2AAA mice (low autophagy) had more severe AKI than WT mice. Tg-Kl mice had milder AKI, but its renoprotection was partially attenuated in Becn1+/-;Tg-Kl mice and was significantly reduced, although not completely abolished, in Bcl2AAA;Tg-Kl mice. Recombinant Klotho protein conferred more renoprotection from AKI in WT mice than in Becn1+/- or Bcl2AAA mice. Klotho reduced beclin 1/Bcl-2 protein complexes and increased autophagy activity, but this effect was less prominent in mice or cells with Bcl2AAA. Transfected Bcl2AAA or Becn1F123A decreased or increased autophagy activity and rendered cells more susceptible or more resistant to oxidative cytotoxicity, respectively. In conclusion, beclin 1 confers renoprotection by activating autophagy. Klotho protects the kidney partially via disruption of beclin 1/Bcl-2 interactions and enhancement of autophagy activity.


Asunto(s)
Autofagia/fisiología , Beclina-1/metabolismo , Glucuronidasa/metabolismo , Enfermedades Renales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Daño por Reperfusión , Animales , Beclina-1/genética , Línea Celular , Regulación de la Expresión Génica , Genotipo , Glucuronidasa/genética , Peróxido de Hidrógeno , Enfermedades Renales/etiología , Proteínas Klotho , Ratones , Zarigüeyas , Proteínas Proto-Oncogénicas c-bcl-2/genética
14.
FASEB J ; 34(2): 3129-3150, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908069

RESUMEN

Aging-related organ degeneration is driven by multiple factors including the cell maintenance mechanisms of autophagy, the cytoprotective protein αKlotho, and the lesser known effects of excess phosphate (Pi), or phosphotoxicity. To examine the interplay between Pi, autophagy, and αKlotho, we used the BK/BK mouse (homozygous for mutant Becn1F121A ) with increased autophagic flux, and αKlotho-hypomorphic mouse (kl/kl) with impaired urinary Pi excretion, low autophagy, and premature organ dysfunction. BK/BK mice live longer than WT littermates, and have heightened phosphaturia from downregulation of two key NaPi cotransporters in the kidney. The multi-organ failure in kl/kl mice was rescued in the double-mutant BK/BK;kl/kl mice exhibiting lower plasma Pi, improved weight gain, restored plasma and renal αKlotho levels, decreased pathology of multiple organs, and improved fertility compared to kl/kl mice. The beneficial effects of heightened autophagy from Becn1F121A was abolished by chronic high-Pi diet which also shortened life span in the BK/BK;kl/kl mice. Pi promoted beclin 1 binding to its negative regulator BCL2, which impairs autophagy flux. Pi downregulated αKlotho, which also independently impaired autophagy. In conclusion, Pi, αKlotho, and autophagy interact intricately to affect each other. Both autophagy and αKlotho antagonizes phosphotoxicity. In concert, this tripartite system jointly determines longevity and life span.


Asunto(s)
Envejecimiento/metabolismo , Autofagia , Glucuronidasa/metabolismo , Fosfatos/metabolismo , Animales , Beclina-1/deficiencia , Beclina-1/genética , Femenino , Glucuronidasa/genética , Células HEK293 , Humanos , Riñón/metabolismo , Proteínas Klotho , Masculino , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
15.
Nephrol Dial Transplant ; 35(3): 411-421, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504790

RESUMEN

BACKGROUND: Vitamin D (VD) and phosphate (Pi) load are considered as contributors to cardiovascular disease in chronic kidney disease and the general population, but interactive effects of VD and Pi intake on the heart are not clearly illustrated. METHODS: We fed normal male rats with three levels of dietary VD (100, 1100 or 5000 IU/kg chow) and Pi (0.2, 0.6 or 1.6%) (3X3 design) for 8 weeks and examined renal and cardiac function and histology. RESULTS: High dietary Pi decreased plasma and renal Klotho and plasma 25-hydroxyvitamin D, and increased plasma Pi, fibroblast growth factor 23 and parathyroid hormone without affecting renal function, while low Pi increased plasma and renal Klotho. Both low and high VD diets enhanced high Pi-reduced Klotho expression. Low dietary VD reduced-plasma Klotho was rescued by a low Pi diet. High dietary Pi reduced-cardiac ejection fraction was not modified by a low or high VD diet, but the dietary VD effects on cardiac pathologic changes were more complex. High dietary Pi-induced cardiac hypertrophy was attenuated by a low VD and exacerbated by a high VD diet. In contrast, high dietary Pi -induced cardiac fibrosis was magnified by a low VD and attenuated by a high VD diet. CONCLUSIONS: High Pi diet induces hypertrophy and fibrosis in left ventricles, a low VD diet accelerates high Pi-induced fibrosis, and a high VD diet exacerbated high Pi -induced hypertrophy. Therefore, cardiac phosphotoxicity is exacerbated by either high or low dietary VD in rats with normal kidney function.


Asunto(s)
Dieta , Riñón/metabolismo , Fosfatos/farmacología , Remodelación Ventricular/fisiología , Vitamina D/análogos & derivados , Animales , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/metabolismo , Riñón/efectos de los fármacos , Proteínas Klotho , Masculino , Hormona Paratiroidea/metabolismo , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular/efectos de los fármacos , Vitamina D/administración & dosificación
16.
Kidney Int Rep ; 4(8): 1131-1142, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31440703

RESUMEN

BACKGROUND: Cardiac surgery-associated acute kidney injury (AKI) is associated with increased morbidity and mortality. We examined the utility of combining biomarkers of kidney function loss (serum cystatin C) and kidney tubular damage (urine neutrophil gelatinase-associated lipocalin [NGAL] and Kidney Injury Molecule-1 [KIM-1]) for the prediction of post-cardiac surgery AKI. METHODS: Single-center prospective cohort study of 106 adults undergoing coronary artery bypass grafting and/or valve surgery with cardiopulmonary bypass (CPB). Primary outcome was postoperative in-hospital AKI defined by serum creatinine (SCr)-Kidney Disease: Improving Global Outcomes criteria. Biomarkers were measured preoperatively, 6 hours after CPB and on postoperative days (PODs) 1 to 4. RESULTS: A total of 23 subjects (21.7%) developed AKI. After adjusting for preoperative left ventricular ejection fraction, body mass index >30 kg/m2, and estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2, the combination of peak serum cystatin C and peak urine KIM-1/creatinine (Cr) (6 hours post-CPB to POD 1) above optimal cutoff significantly associated with postoperative AKI (odds ratio [OR]: 5.32; 95% confidence interval [CI]: 1.31-21.67; P = 0.020). This biomarker combination significantly improved the performance of the clinical model for the prediction of postoperative AKI (area under the curve [AUC]: 0.77, 95% CI: 0.65-0.90 for the clinical model alone versus 0.83, 95% CI: 0.73-0.93 for the clinical model with the addition of biomarker data, P = 0.049). CONCLUSIONS: Combining biomarkers of postoperative kidney function loss and postoperative kidney tubular damage significantly improved prediction of in-hospital AKI following cardiac surgery. Future large, multicenter studies are warranted to assess whether panels of biomarkers reflecting distinct pathobiology can be used to guide interventions and improve short- and long-term outcomes in patients undergoing cardiac surgery.

17.
Circulation ; 139(11): 1422-1434, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30612451

RESUMEN

BACKGROUND: Inorganic phosphate (Pi) is used extensively as a preservative and a flavor enhancer in the Western diet. Physical inactivity, a common feature of Western societies, is associated with increased cardiovascular morbidity and mortality. It is unknown whether dietary Pi excess contributes to exercise intolerance and physical inactivity. METHODS: To determine an association between Pi excess and physical activity in humans, we assessed the relationship between serum Pi and actigraphy-determined physical activity level, as well as left ventricular function by cardiac magnetic resonance imaging, in DHS-2 (Dallas Heart Study phase 2) participants after adjusting for relevant variables. To determine direct effects of dietary Pi on exercise capacity, oxygen uptake, serum nonesterified fatty acid, and glucose were measured during exercise treadmill test in C57/BL6 mice fed either a high-Pi (2%) or normal-Pi (0.6%) diet for 12 weeks. To determine the direct effect of Pi on muscle metabolism and expression of genes involved in fatty acid metabolism, additional studies in differentiated C2C12 myotubes were conducted after subjecting to media containing 1 to 3 mmol/L Pi (pH 7.0) to simulate in vivo phosphate conditions. RESULTS: In participants of the DHS-2 (n=1603), higher serum Pi was independently associated with reduced time spent in moderate to vigorous physical activity ( P=0.01) and increased sedentary time ( P=0.004). There was no association between serum Pi and left ventricular ejection fraction or volumes. In animal studies, compared with the control diet, consumption of high-Pi diet for 12 weeks did not alter body weight or left ventricular function but reduced maximal oxygen uptake, treadmill duration, spontaneous locomotor activity, fat oxidation, and fatty acid levels and led to downregulation of genes involved in fatty acid synthesis, release, and oxidation, including Fabp4, Hsl, Fasn, and Pparγ, in muscle. Similar results were recapitulated in vitro by incubating C2C12 myotubes with high-Pi media. CONCLUSIONS: Our data demonstrate a detrimental effect of dietary Pi excess on skeletal muscle fatty acid metabolism and exercise capacity that is independent of obesity and cardiac contractile function. Dietary Pi may represent a novel and modifiable target to reduce physical inactivity associated with the Western diet.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Tolerancia al Ejercicio/efectos de los fármacos , Ácidos Grasos/metabolismo , Músculo Esquelético/efectos de los fármacos , Fosfatos/efectos adversos , Fósforo Dietético/efectos adversos , Animales , Línea Celular , Metabolismo Energético/genética , Ejercicio Físico , Tolerancia al Ejercicio/genética , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Fosfatos/administración & dosificación , Fosfatos/metabolismo , Fósforo Dietético/administración & dosificación , Fósforo Dietético/metabolismo , Conducta Sedentaria
18.
JCI Insight ; 4(2)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30674725

RESUMEN

Acute kidney injury (AKI) is a common clinical condition of growing incidence. Patients who suffer severe AKI have a higher risk of developing interstitial fibrosis, chronic kidney disease, and end-stage renal disease later in life. Cellular senescence is a persistent cell cycle arrest and altered gene expression pattern evoked by multiple stressors. The number of senescent cells increases with age and even in small numbers these cells can induce chronic inflammation and fibrosis; indeed, in multiple organs including kidneys, the accumulation of such cells is a hallmark of aging. We hypothesized that cellular senescence might be induced in the kidney after injury and that this might contribute to progressive organ fibrosis. Testing this hypothesis, we found that tubular epithelial cells (TECs) in mice senesce within a few days of kidney injury and that this response is mediated by epithelial Toll-like and interleukin 1 receptors (TLR/IL-1R) of the innate immune system. Epithelial cell-specific inhibition of innate immune signaling in mice by knockout of myeloid differentiation 88 (Myd88) reduced fibrosis as well as damage to kidney tubules, and also prevented the accumulation of senescent TECs. Importantly, although inactivation of Myd88 after injury ameliorated fibrosis, it did not reduce damage to the tubules. Selectively induced apoptosis of senescent cells by two different approaches only partially reduced kidney fibrosis, without ameliorating damage to the tubules. Our data reveal a cell-autonomous role for epithelial innate immunity in controlling TEC senescence after kidney injury, and additionally suggest that early therapeutic intervention is required for effective reduction of long-term sequelae of AKI.

19.
Pflugers Arch ; 471(1): 99-108, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30506274

RESUMEN

Alpha-Klotho is a member of the Klotho family consisting of two other single-pass transmembrane proteins: ßKlotho and γKlotho; αKlotho has been shown to circulate in the blood. Fibroblast growth factor (FGF)23 is a member of the FGF superfamily of 22 genes/proteins. αKlotho serves as a co-receptor with FGF receptors (FGFRs) to provide a receptacle for physiological FGF23 signaling including regulation of phosphate metabolism. The extracellular domain of transmembrane αKlotho is shed by secretases and released into blood circulation (soluble αKlotho). Soluble αKlotho has both FGF23-independent and FGF23-dependent roles in phosphate homeostasis by modulating intestinal phosphate absorption, urinary phosphate excretion, and phosphate distribution into bone in concerted interaction with other calciophosphotropic hormones such as PTH and 1,25-(OH)2D. The direct role of αKlotho and FGF23 in the maintenance of phosphate homeostasis is partly mediated by modulation of type II Na+-dependent phosphate co-transporters in target organs. αKlotho and FGF23 are principal phosphotropic hormones, and the manipulation of the αKlotho-FGF23 axis is a novel therapeutic strategy for genetic and acquired phosphate disorders and for conditions with FGF23 excess and αKlotho deficiency such as chronic kidney disease.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/metabolismo , Homeostasis , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo II/metabolismo , Animales , Factor-23 de Crecimiento de Fibroblastos , Humanos , Proteínas Klotho
20.
J Nephrol ; 32(3): 365-377, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30430412

RESUMEN

Fibroblast growth factor 21 (FGF21) is a member of the endocrine FGF family that acts as a metabolic regulator of both glucose and lipid metabolism. Similar to fibroblast growth factor 23 (FGF23), serum FGF21 levels rise progressively with the loss of renal function, reaching 20 times normal values in end-stage renal disease. In patients with chronic kidney disease (CKD), higher serum FGF21 levels correlate with poorer metabolic profile, higher inflammatory markers, more comorbidities, and higher mortality. The high serum FGF21 levels are above and beyond what can be explained by the loss of FGF21 renal clearance, suggesting increased production and/or impaired non-renal clearance. In diabetic nephropathy, serum FGF21 levels correlate with the severity of albuminuria and faster loss of glomerular filtrate rate and can potentially be a biomarker of poor prognostic. The observational and associative human data contrast sharply with in vitro and in vivo preclinical experimental data, which is more in line with a protective role of FGF21 in chronic nephropathies. We here review the physiology of FGF21, and the literature regarding its behavior in CKD with particular focus on diabetic nephropathy. Finally, we speculate on the role of FGF21 in CKD.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Biomarcadores/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA