Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 21(1): 56-72, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31271024

RESUMEN

Oxygen (O2) generating biomaterials are emerging as important compositions to improve our capabilities in supporting tissue engineering and regenerative therapeutics. Several in vitro studies demonstrated the usefulness of O2 releasing biomaterials in enhancing cell survival and differentiation. However, more efforts are needed to develop materials that can provide sustained O2 release for the long-term. In this paper, we present different O2 generating sources, including hydrogen peroxide, sodium percarbonate, calcium peroxide and magnesium peroxide, and also cover types of carriers and relevant methods of fabricating O2 generating systems. Then, the applications of O2 generating materials in supporting engineered constructs, supplying high O2 demanding cell transplants, and supporting ischemic tissues are discussed. Moreover, the challenges and future perspectives are highlighted.


Asunto(s)
Materiales Biocompatibles/química , Oxígeno , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liofilización , Humanos , Hipoxia/terapia , Oxígeno/administración & dosificación , Oxígeno/metabolismo , Oxígeno/farmacocinética
2.
Biofabrication ; 11(4): 042002, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31170695

RESUMEN

Recent advances in bioprinting technologies have enabled rapid manufacturing of organ-on-chip models along with biomimetic tissue microarchitectures. Bioprinting techniques can be used to integrate microfluidic channels and flow connections in organ-on-chip models. We review bioprinters in two categories of nozzle-based and optical-based methods, and then discuss their fabrication parameters such as resolution, replication fidelity, fabrication time, and cost for micro-tissue models and microfluidic applications. The use of bioprinters has shown successful replicates of functional engineered tissue models integrated within a desired microfluidic system, which facilitates the observation of metabolism or secretion of models and sophisticated control of a dynamic environment. This may provide a wider order of tissue engineering fabrication in mimicking physiological conditions for enhancing further applications such as drug development and pathological studies.


Asunto(s)
Bioimpresión/instrumentación , Ingeniería de Tejidos/instrumentación , Animales , Humanos , Microtecnología , Óptica y Fotónica
3.
Biomed Microdevices ; 21(2): 42, 2019 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-30955134

RESUMEN

Three-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future.


Asunto(s)
Bioimpresión/métodos , Impresión Tridimensional/instrumentación , Medicina Regenerativa , Bioimpresión/instrumentación , Diseño de Equipo
4.
ACS Sens ; 4(4): 892-899, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30817891

RESUMEN

Supported lipid bilayers (SLBs) have been widely used to provide native environments for membrane protein studies. In this study, we utilized graphene field-effect transistors (GFETs) coated with a fluid SLB to perform label-free detection of membrane-associated ligand-receptor interactions in their native lipid bilayer environment. It is known that the analyte-binding event needs to occur within the Debye length for it to be significantly sensed by an FET sensor. However, the thickness of a lipid bilayer is around 4-5-nm-thick, which is larger than the Debye length of a solution with physiologically relevant ionic strength. There is thus a question of whether an FET sensor can detect the binding event above the bilayer. In this study, we show how the existence of an SLB can influence the effective detection distance and the formation criterion of a fluid and continuous SLB on a graphene surface. We discovered that the water intercalation between the graphene and the underlying silica substrate hinders the SLB formation but is required for the stable electrical recording by a GFET. To verify the existence of a fluid SLB on graphene, which was previously complicated by the graphene fluorescence quenching effect, we developed a modified fluorescence recovery after photobleaching method. In addition, our results showed that SLB coated GFETs can quantitatively detect ligand binding onto the receptors embedded in the SLBs. The comparison of our experimental data with a theoretical model shows that the contribution of the SLB acyl chain hydrophobic region to the screening effect can be negligible and, therefore, that the effective detection region can extend beyond the SLB.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Grafito/química , Membrana Dobles de Lípidos/química , Transistores Electrónicos , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Bovinos , Colorantes Fluorescentes/química , Ligandos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/metabolismo , Albúmina Sérica Bovina/metabolismo , Estreptavidina/metabolismo , Agua/química
5.
Biofabrication ; 11(2): 025014, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30786263

RESUMEN

Physicochemical and biological gradients are desirable features for hydrogels to enhance their relevance to biological environments for three-dimensional (3D) cell culture. Therefore, simple and efficient techniques to generate chemical, physical and biological gradients within hydrogels are highly desirable. This work demonstrates a technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels by stacking and crosslinking prehydrogel solution in a layer by layer manner. Partial crosslinking of the hydrogel allows mixing of prehydrogel solution with the previous hydrogel layer, which makes a smooth gradient profile, rather than discrete layers. This technique enables the generation of concentration gradients of bovine serum albumin in both gelatin methacryloyl (GelMA) and poly(ethylene glycol) diacrylate hydrogels, as well as mechanical gradients across a hydrogel containing varying gel concentrations. Fluorescence microscopy, mechanical testing, and scanning electron microscopy show that the gradient profiles can be controlled by changing both the volume and concentration of each layer as well as intensity of UV exposure. GelMA hydrogel gradients with different Young's moduli were successfully used to culture human fibroblasts. The fibroblasts migrated along the gradient axis and showed different morphologies. In general, the proposed technique provides a rapid and simple approach to design and fabricate 3D hydrogel gradients for in vitro biological studies and potentially for in vivo tissue engineering applications.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Luz , Fenómenos Mecánicos , Animales , Humanos , Metacrilatos/química , Ratones , Células 3T3 NIH , Polímeros/química , Albúmina Sérica Bovina/metabolismo , Porcinos , Rayos Ultravioleta
6.
Proc Natl Acad Sci U S A ; 114(32): 8568-8573, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739955

RESUMEN

Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.


Asunto(s)
Mecanotransducción Celular/fisiología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/fisiología , Animales , Caveolina 1/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Movimiento Celular/fisiología , Electricidad , Humanos , Integrinas/metabolismo , Transducción de Señal , Porcinos , Cicatrización de Heridas/fisiología
7.
Soft Matter ; 12(33): 6954-63, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27476605

RESUMEN

Processing and managing cell membrane proteins for characterization while maintaining their intact structure is challenging. Hydrodynamic flow has been used to transport membrane species in supported lipid bilayers (SLBs) where the hydrophobic cores of the membrane species can be protected during processing. However, the forced convection mechanism of species embedded in lipid bilayers is still unclear. Developing a controlled SLB platform with a practical model to predict the membrane species mobility in the platform under in-lipid-membrane forced convection is imperative to ensure the practical applicability of SLBs in processing and managing membrane species with various geometrical properties. The mobility of membrane species is affected by the driving force from the aqueous environment in addition to the frictions from the lipid bilayer, in which both lipid leaflets may exhibit different speeds relative to that of the moving species. In this study, we developed a model, based on the applied driving force and the possible frictional resistances that the membrane species encounter, to predict how the mobility under in-lipid-membrane forced convection is influenced by the sizes of the species' hydrophilic portion in the aqueous environment and the hydrophobic portion embedded in the membrane. In addition, we used a microfluidic device for controlling the flow to arrange the lipid membrane and the tested membrane species in the desirable locations in order to obtain a SLB platform which can provide clear mobility responses of the species without disturbance from the species dispersion effect. The model predictions were consistent with the experimental observations, with the sliding friction coefficient between the upper leaflet and the hydrophilic portion of the species as the only regressed parameter. The result suggests that not only the lateral drag frictions from the lipid layers but also the sliding frictions between the species and the lipid layer planes could significantly influence the species mobility. The consistency between the experimental results and the model predictions suggests that our model based on lateral drag and sliding frictions between the species and the lipid leaflets can be used to describe the mobility of half-transmembrane species. We also demonstrated the possibility of how the scope of this model can be broadened to describe the mobility of transmembrane proteins extending through both lipid leaflets.


Asunto(s)
Membrana Celular/química , Convección , Membrana Dobles de Lípidos/química , Hidrodinámica , Interacciones Hidrofóbicas e Hidrofílicas
8.
Biomicrofluidics ; 8(5): 052005, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25332729

RESUMEN

Supported lipid bilayer (SLB) platforms have been developed to transport and separate membrane-embedded species in the species' native bilayer environment. In this study, we used the phase segregation phenomenon of lipid mixtures containing a polymerizable diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), and a nonpolymerizable phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), to create filter barrier structures in SLBs. Upon exposing the phase segregated samples to UV light, the DiynePC-rich domains could become crosslinked and remain fixed on the surface of the support, while the DOPC-rich regions, where no crosslinking could happen, could be removed later by detergent washing, and thus became the void regions in the filter. During the filter fabrication process, we used the laminar flow configuration in a microfluidic channel to control the spatial locations of the feed region and filter region in the SLB. The flow in a microfluidic channel was also used to apply a strong hydrodynamic shear stress to the SLB to transport the membrane-embedded species from the feed region to the filter region. We varied the DiynePC/DOPC molar ratio from 60/40 to 80/20 to adjust the cutoff size of the filter barriers and used two model membrane-embedded species of different sizes to examine the filtering capability. One of the model species, Texas Red 1,2-dihexa-decanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (Texas Red DHPE), had a single-lipid size, and the other species, cholera toxin subunit B-GM1 complex, had a multilipid size. When the DiynePC/DOPC molar ratio was 60/40, both species had high penetration ratios in the filter region. However, when the ratio was increased to 70/30, only the Texas Red DHPE, which was the smaller of the two model species, could penetrate the filter to a considerable extent. When the ratio was increased to 80/20, neither of the model species could penetrate the filter region. The results showed the possibility of using phase segregation of a mixture containing a polymerizable lipid and a nonpolymerizable lipid to fabricate filter barrier structures with tunable cutoff sizes in SLBs.

9.
Sci Technol Adv Mater ; 14(4): 044408, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877593

RESUMEN

Separating and purifying cell membrane-associated biomolecules has been a challenge owing to their amphiphilic property. Taking these species out of their native lipid membrane environment usually results in biomolecule degradation. One of the new directions is to use supported lipid bilayer (SLB) platforms to separate the membrane species while they are protected in their native environment. Here we used a type of crosslinkable diacetylene phospholipids, diynePC (1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine), as a packed material to create a 'two-dimensional (2D) packed bed' in a SLB platform. After the diynePC SLB is exposed to UV light, some of the diynePC lipids in the SLB can crosslink and the non-crosslinked monomer lipids can be washed away, leaving a 2D porous solid matrix. We incorporated the lipid vesicle deposition method with a microfluidic device to pattern the location of the packed-bed region and the feed region with species to be separated in a SLB platform. Our atomic force microscopy result shows that the nano-scaled structure density of the '2D packed bed' can be tuned by the UV dose applied to the diynePC membrane. When the model membrane biomolecules were forced to transport through the packed-bed region, their concentration front velocities were found to decrease linearly with the UV dose, indicating the successful creation of packed obstacles in these 2D lipid membrane separation platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA