Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(42): 28961-28972, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39279160

RESUMEN

Pressure-induced emission (PIE) is a compelling phenomenon that can activate luminescence within nonemissive materials. However, PIE in nonemissive organic materials has never been achieved. Herein, we present the first observation of PIE in an organic system, specifically within nonemissive azobenzene derivatives. The emission of 1,2-bis(4-(anthracen-9-yl)phenyl)diazene was activated at 0.52 GPa, primarily driven by local excitation promotion induced by molecular conformational changes. Complete photoisomerization suppression of the molecule was observed at 1.5 GPa, concurrently accelerating the emission enhancement to 3.53 GPa. Differing from the key role of isomerization inhibition in conventional perception, our findings demonstrate that the excited-state constituent is the decisive factor for emission activation, providing a potentially universal approach for high-efficiency azobenzene emission. Additionally, PIE was replicated in the analogue 1,2-bis(4-(9H-carbazol-9-yl)phenyl)diazene, confirming the general applicability of our findings. This work marks a significant breakthrough within the PIE paradigm and paves the novel high-pressure route for crystalline-state photoisomerization investigation.

2.
Chem Sci ; 14(42): 11629-11637, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37920334

RESUMEN

Unlike the known aggregation-caused quenching (ACQ) that the enhancement of π-π interactions in rigid organic molecules usually decreases the luminescent emission, here we show that an intermolecular "head-to-head" π-π interaction in the phenanthrene crystal, forming the so-called "transannular effect", could result in a higher degree of electron delocalization and thus photoluminescent emission enhancement. Such a transannular effect is molecular configuration and stacking dependent, which is absent in the isomers of phenanthrene but can be realized again in the designed phenanthrene-based cocrystals. The transannular effect becomes more significant upon compression and causes anomalous piezoluminescent enhancement in the crystals. Our findings thus provide new insights into the effects of π-π interactions on luminescence emission and also offer new pathways for designing efficient aggregation-induced emission (AIE) materials to advance their applications.

3.
Chem Sci ; 14(6): 1479-1484, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794196

RESUMEN

A novel piezo-activated luminescent material with wide range modulation of the luminescence wavelength and a giant intensity enhancement upon compression was prepared using a strategy of molecular doping. The doping of THT molecules into TCNB-perylene cocrystals results in the formation of a weak but pressure-enhanced emission center in the material at ambient pressure. Upon compression, the emissive band from the undoped component TCNB-perylene undergoes a normal red shift and emission quenching, while the weak emission center shows an anomalous blue shift from 615 nm to 574 nm and a giant luminescence enhancement up to 16 GPa. Further theoretical calculations show that doping by THT could modify intermolecular interactions, promote molecular deformation, and importantly, inject electrons into the host TCNB-perylene upon compression, which contributes to the novel piezochromic luminescence behavior. Based on this finding, we further propose a universal approach to design and regulate the piezo-activated luminescence of materials by using other similar dopants.

4.
J Phys Chem Lett ; 13(5): 1290-1299, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35099978

RESUMEN

Achieving high-efficiency solid state emission is essential for practical applications of organic luminescent materials. However, intermolecular interactions generally induce formation of multimeric aggregate excited states with deficient emissive ability, making it extremely challenging to enhance emission in aggregated states. Here we demonstrate a novel strategy of continuously regulating multimeric excitation constituents with a high-pressure technique successfully enhancing the emission in a representative organic charge-transfer material, Laurdan (6-lauroyl-N,N-dimethyl-2-naphthylamine). The Laurdan crystal exhibits distinct emission enhancement up to 4.1 GPa accompanied by a shift in the emission color from blue to cyan. Under compression, the π-π interplanar distance in Laurdan multimers is reduced, and intermolecular wave function diffusion is demonstrated to be improved simultaneously, which results in local excitation promotion and thus enhanced emission. Our findings not only provide new insights into multimeric excited state emission modulation but also pave the way for the further design of high-performance aggregated luminophores.

5.
Nat Commun ; 12(1): 4084, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215739

RESUMEN

Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier. By combining experiment with theory, it is further revealed that the inserted non-emissive THF forms blue-shifting hydrogen bonds with neighboring TCNB molecules and promote a conformation change of perylene molecules upon compression, causing the blue-shifted and enhanced emission. This strategy remains valid when inserting other molecules as non-emissive component into perylene-TCNB cocrystals for abnormal piezochromic luminescent behaviors.

6.
Nano Lett ; 19(2): 1351-1358, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30629450

RESUMEN

Potassium-ion batteries (KIBs) are a promising alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage owning to the natural abundance and low cost of potassium. However, the biggest challenge for KIBs application lies in the lack of suitable electrode materials that can deliver long cycle life and high reversible capacity. In this work, we realized unprecedented long cycle life with high reversible capacity (465 mAh g-1 at 2 A g-1 after 800 cycles) as well as outstanding rate capability (342 mAh g-1 at 5 A g-1) for KIBs by embedding red P into free-standing nitrogen-doped porous hollow carbon nanofibers (red P@N-PHCNFs). This design circumvents the problems of pulverization and aggregation of P particles. The  in situ transmission electron microscopy (TEM) investigation reveals the structural robustness of the composite fibers during potassiation. The formation of P-C chemical bonds as well as nitrogen doping in the carbon matrix can facilitate the sturdy contact and enhance the adsorption energy of P atoms evidenced by DFT results. In situ Raman and ex situ XRD demonstrate that the final discharge product of the red P@N-PHCNFs is K4P3.

7.
Small ; 13(19)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28371449

RESUMEN

A one-step synthesis procedure is developed to prepare flexible S0.6 Se0.4 @carbon nanofibers (CNFs) electrode by coheating S0.6 Se0.4 powder with electrospun polyacrylonitrile nanofiber papers at 600 °C. The obtained S0.6 Se0.4 @CNFs film can be used as cathode material for high-performance Li-S batteries and room temperature (RT) Na-S batteries directly. The superior lithium/sodium storage performance derives from its rational structure design, such as the chemical bonding between Se and S, the chemical bonding between S0.6 Se0.4 and CNFs matrix, and the 3D CNFs network. This easy one-step synthesis procedure provides a feasible route to prepare electrode materials for high-performance Li-S and RT Na-S batteries.

8.
Adv Mater ; 29(16)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28224683

RESUMEN

Red phosphorus (P) has attracted intense attention as promising anode material for high-energy density sodium-ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g-1 ). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework-8 (ZIF-8) -derived nitrogen-doped microporous carbon matrix (denoted as P@N-MPC). When used as anode for NIBs, the P@N-MPC composite displays a high reversible specific capacity of ≈600 mAh g-1 at 0.15 A g-1 and improved rate capacity (≈450 mAh g-1 at 1 A g-1 after 1000 cycles with an extremely low capacity fading rate of 0.02% per cycle). The superior sodium storage performance of the P@N-MPC is mainly attributed to the novel structure. The N-doped porous carbon with sub-1 nm micropore facilitates the rapid diffusion of organic electrolyte ions and improves the conductivity of the encapsulated red P. Furthermore, the porous carbon matrix can buffer the volume change of red P during repeat sodiation/desodiation process, keeping the structure intact after long cycle life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...