Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014077

RESUMEN

When nature maintains or evolves a gene's function over millions of years at scale, it produces a diversity of homologous sequences whose patterns of conservation and change contain rich structural, functional, and historical information about the gene. However, natural gene diversity likely excludes vast regions of functional sequence space and includes phylogenetic and evolutionary eccentricities, limiting what information we can extract. We introduce an accessible experimental approach for compressing long-term gene evolution to laboratory timescales, allowing for the direct observation of extensive adaptation and divergence followed by inference of structural, functional, and environmental constraints for any selectable gene. To enable this approach, we developed a new orthogonal DNA replication (OrthoRep) system that durably hypermutates chosen genes at a rate of >10 -4 substitutions per base in vivo . When OrthoRep was used to evolve a conditionally essential maladapted enzyme, we obtained thousands of unique multi-mutation sequences with many pairs >60 amino acids apart (>15% divergence), revealing known and new factors influencing enzyme adaptation. The fitness of evolved sequences was not predictable by advanced machine learning models trained on natural variation. We suggest that OrthoRep supports the prospective and systematic discovery of constraints shaping gene evolution, uncovering of new regions in fitness landscapes, and general applications in biomolecular engineering.

2.
Nat Chem Biol ; 17(10): 1057-1064, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34168368

RESUMEN

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, not always accessible and poorly compatible with many antigens. Here, we describe 'autonomous hypermutation yeast surface display' (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. By encoding antibody fragments on an error-prone orthogonal DNA replication system, surface-displayed antibody repertoires continuously mutate through simple cycles of yeast culturing and enrichment for antigen binding to produce high-affinity clones in as little as two weeks. We applied AHEAD to generate potent nanobodies against the SARS-CoV-2 S glycoprotein, a G-protein-coupled receptor and other targets, offering a template for streamlined antibody generation at large.


Asunto(s)
Formación de Anticuerpos/inmunología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Anticuerpos/inmunología , Antígenos , COVID-19/inmunología , Humanos , Biblioteca de Péptidos , Proteínas Recombinantes/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Saccharomyces cerevisiae/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
J Vis Exp ; (167)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33522514

RESUMEN

Controlling biological processes using light has increased the accuracy and speed with which researchers can manipulate many biological processes. Optical control allows for an unprecedented ability to dissect function and holds the potential for enabling novel genetic therapies. However, optogenetic experiments require adequate light sources with spatial, temporal, or intensity control, often a bottleneck for researchers. Here we detail how to build a low-cost and versatile LED illumination system that is easily customizable for different available optogenetic tools. This system is configurable for manual or computer control with adjustable LED intensity. We provide an illustrated step-by-step guide for building the circuit, making it computer-controlled, and constructing the LEDs. To facilitate the assembly of this device, we also discuss some basic soldering techniques and explain the circuitry used to control the LEDs. Using our open-source user interface, users can automate precise timing and pulsing of light on a personal computer (PC) or an inexpensive tablet. This automation makes the system useful for experiments that use LEDs to control genes, signaling pathways, and other cellular activities that span large time scales. For this protocol, no prior expertise in electronics is required to build all the parts needed or to use the illumination system to perform optogenetic experiments.


Asunto(s)
Iluminación , Optogenética/métodos , Electricidad , Electrónica , Pruebas de Enzimas , Regulación de la Expresión Génica , Células HEK293 , Humanos , Luz , Luciferasas/metabolismo , Programas Informáticos
4.
ACS Synth Biol ; 7(2): 706-717, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29301067

RESUMEN

Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.


Asunto(s)
Proteínas de Arabidopsis , Proteínas Bacterianas , Ferredoxinas , Optogenética , Fitocromo B , Sulfito Reductasa (Ferredoxina) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Ferredoxinas/biosíntesis , Ferredoxinas/genética , Células HEK293 , Humanos , Fitocromo B/biosíntesis , Fitocromo B/genética , Sulfito Reductasa (Ferredoxina)/biosíntesis , Sulfito Reductasa (Ferredoxina)/genética , Synechococcus/genética , Synechococcus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...