Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202408569, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837843

RESUMEN

The integration of hostless battery-like metal anodes for hybrid supercapacitors is a realistic design method for energy storage devices with promising future applications. With significant Cr element deposits on Earth, exceptionally high theoretical capacity (1546 mAh g-1), and accessible redox potential (-0.74 V vs. reversible hydrogen electrode) of Cr metals, the design of Cr anodes has rightly come into our focus. This work presents a breakthrough design of a flexible Cr-ion hybrid supercapacitor (CHSC) based on a porous graphitized carbon fabric (PGCF) substrate prepared by K2FeO4 activation. In the CHSC device, PGCF acts as both a current collector and cathode material due to its high specific surface area and superior conductivity. The use of a highly concentrated LiCl-CrCl3 electrolyte with high Cr plating/stripping efficiency and excellent antifreeze properties enables the entire PGCF-based CHSC to achieve well-balanced performance in terms of energy density (up to 1.47 mWh cm-2), power characteristics (reaching 9.95 mW cm-2) and durability (95.4 % capacity retention after 30,000 cycles), while realizing it to work well under harsh conditions of -40 °C. This work introduces a new concept for low-temperature energy storage technology and confirms the potential application of Cr anodes in hybrid supercapacitors.

2.
J Colloid Interface Sci ; 667: 157-165, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636217

RESUMEN

The practical application of zinc ion batteries (ZIBs) can be facilitated by designing cathode materials with unique structures that can overcome the critical problems of slow reaction kinetics and large volume expansion associated with the intercalation reaction of divalent zinc ions. In this study, a novel urchin-like (NH4)2V10O25·8H2O assembled from nanorods was synthesized by a simple hydrothermal method, noted as U-NVO. The interlayer organic pillar of cetyltrimethylammonium cation (CTAB) has been intercalated between layers to regulate the interlayer microstructure and expand the interlayer spacing to 1.32 nm, which effectively increased the contact between the electrode and electrolyte interface and shortened the diffusion path of electrolyte ions. The interlayer pillars of structural H2O and NH4+ provide a flexible framework structure and enhance the cohesion of the layered structure, which helps to maintain structural stability during the charging and discharging process, resulting in long-term durability. These unique properties result in the U-NVO cathodes demonstrating high specific capacity (401.7 mA h g-1 at 0.1 A g-1), excellent rate capability (99.6 % retention from 0.1 to 5 A g-1 and back to 0.1 A g-1), and long-term cycling performance (∼87.5 % capacity retention after 2600 cycles). These results offer valuable insights into the design of high-performance vanadium oxide cathode materials.

3.
iScience ; 27(5): 109649, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638567

RESUMEN

Excessive neuroinflammation after spinal cord injury (SCI) is a major hurdle during nerve repair. Although proinflammatory macrophage/microglia-mediated neuroinflammation plays important roles, the underlying mechanism that triggers neuroinflammation and aggravating factors remain unclear. The present study identified a proinflammatory role of semaphorin3C (SEMA3C) in immunoregulation after SCI. SEMA3C expression level peaked 7 days post-injury (dpi) and decreased by 14 dpi. In vivo and in vitro studies revealed that macrophages/microglia expressed SEMA3C in the local microenvironment, which induced neuroinflammation and conversion of proinflammatory macrophage/microglia. Mechanistic experiments revealed that RAGE/NF-κB was downstream target of SEMA3C. Inhibiting SEMA3C-mediated RAGE signaling considerably suppressed proinflammatory cytokine production, reversed polarization of macrophages/microglia shortly after SCI. In addition, inhibition of SEMA3C-mediated RAGE signaling suggested that the SEMA3C/RAGE axis is a feasible target to preserve axons from neuroinflammation. Taken together, our study provides the first experimental evidence of an immunoregulatory role for SEMA3C in SCI via an autocrine mechanism.

4.
Chaos ; 34(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271629

RESUMEN

We revise soliton and lump solutions described by the cylindrical Kadomtsev-Petviashvili (cKP) equation and construct new exact solutions relevant to physical observation. In the first part of this study, we consider basically axisymmetric waves described by the cylindrical Kortweg-de Vries equation and analyze approximate and exact solutions to this equation. Then, we consider the stability of the axisymmetric solitons with respect to the azimuthal perturbations and suggest a criterion of soliton instability. The results of our numerical modeling confirm the suggested criterion and reveal lump emergence in the course of the development of the modulation instability of ring solitons in the unstable case. In the next part of this study, which will follow shortly, we will present exact solutions to the cKP equation describing weakly nonlinear waves in media with positive dispersion subject to the modulation instability of solitons with respect to small azimuthal perturbations.

5.
Chaos ; 34(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252780

RESUMEN

We study solitary waves in the cylindrical Kadomtsev-Petviashvili equation designated to media with positive dispersion (the cKP1 equation). By means of the Darboux-Matveev transform, we derive exact solutions that describe two-dimensional solitary waves (lumps), lump chains, and their interactions. One of the obtained solutions describes the modulation instability of outgoing ring solitons and their disintegration onto a number of lumps. We also derive solutions describing decaying lumps and lump chains of a complex spatial structure-ripplons. Then, we study normal and anomalous (resonant) interactions of lump chains with each other and with ring solitons. Results obtained agree with the numerical data presented in Part I of this study [Hu et al., Chaos (2024)].

6.
J Colloid Interface Sci ; 650(Pt B): 1274-1284, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478744

RESUMEN

Transition-metal sulfides (TMS) have piqued a great deal of interest due to their unprecious nature and high intrinsic catalytic activity for water splitting. In this work, a low-cost and efficient route was developed, which included electrodeposition to prepare Ni-Co layered double hydroxide (NiCo-LDH) followed by ion exchange to form nickel cobalt sulfide (NiCoSx). Electrochemical reduction was used to modulate sulfur vacancies in order to produce sulfur vacancies-rich NiCoSx with nanosheet arrays on -three-dimensional nickel foam (NiCoSx-0.4/NF) with a large area of more than 250 cm2. Combining data from experiments and density functional theoretical (DFT) calculations reveals that engineered sulfur vacancies change the electronic structure, electron transfer property, and surface electron density of NiCoSx, significantly improving the free energy of water adsorption and boosting electrocatalytic activity. The developed NiCoSx-0.4/NF has long-term stability of more than 300 h at 500 mA cm-2 in 1 M KOH at ambient temperature and only needs a 289 mV overpotential at 100 mA cm-2. Remarkably, the synthesized electrocatalyst rich in sulfur vacancies, exhibits exceptional performance with a high current density of up to 1.9 A cm-2 and 1 A cm-2 in 6 M KOH and leads to overpotentials of 286 mV at 80 °C and 358 mV at 60 °C, respectively. The catalyst's practicability under quasi-industrial conditions (60 °C, 6 M KOH) is further demonstrated by its long-term stability for 220 h with only a 3.9 % potential increase at 500 mA cm-2.

7.
J Colloid Interface Sci ; 650(Pt A): 456-465, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421748

RESUMEN

Transition metal dichalcogenides (TMDs) as materials for aqueous zinc-ion batteries (ZIBs) have received a lot of interest because of their large theoretical capacity and unique layered structure. However, the sluggish kinetics and inferior cyclic stability limit the usefulness of ZIBs. In the present investigation, the interlayer spacing enlarged MoSe2 hollow nanospheres comprised of nanosheets with ultrathin shells have been successfully synthesized through a combined strategy of template assistance and anion-exchange reaction. The hierarchical ultrathin nanosheets and hollow structure effectively suppress the agglomeration of pure nanosheets and ameliorate volume fluctuations induced by ion migration during (dis)charging/charging. The interlayer expansion provides good channels for the transport of Zn2+ ions and speeds up the insertion/extraction of Zn2+. In addition, in-situ carbon modification can significantly improve electronic conductivity. Therefore, the electrode prepared from MoSe2 hollow nanospheres with enlarged interlayer spacing not only exhibits outstanding cycle stability (capacity retention of 94.5% after 1600 cycles) but also exhibits high-rate capability (266.1 mA h g-1 at 0.1 A g-1 and 203.6 mA h g-1 at 3 A g-1). This work could provide new insights into the design of cathode using TMDs of hollow structure for Zn2+ storage.

8.
CNS Neurosci Ther ; 29(10): 2901-2911, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37122148

RESUMEN

BACKGROUND: The extensive functional and structural remodeling that occurs in the brain after amputation often results in phantom limb pain (PLP). These closely related phenomena are still not fully understood. METHODS: Using magnetic resonance imaging (MRI) and graph theoretical analysis (GTA), we explored how alterations in brain cortical thickness (CTh) and structural covariance networks (SCNs) in upper limb amputees (ULAs) relate to PLP. In all, 45 ULAs and 45 healthy controls (HCs) underwent structural MRI. Regional network properties, including nodal degree, betweenness centrality (BC), and node efficiency, were analyzed with GTA. Similarly, global network properties, including global efficiency (Eglob), local efficiency (Eloc), clustering coefficient (Cp), characteristic path length (Lp), and the small-worldness index, were evaluated. RESULTS: Compared with HCs, ULAs had reduced CThs in the postcentral and precentral gyri contralateral to the amputated limb; this decrease in CTh was negatively correlated with PLP intensity in ULAs. ULAs showed varying degrees of change in node efficiency in regional network properties compared to HCs (p < 0.005). There were no group differences in Eglob, Eloc, Cp, and Lp properties (all p > 0.05). The real-worldness SCN of ULAs showed a small-world topology ranging from 2% to 34%, and the area under the curve of the small-worldness index in ULAs was significantly different compared to HCs (p < 0.001). CONCLUSION: These results suggest that the topological organization of human CNS functional networks is altered after amputation of the upper limb, providing further support for the cortical remapping theory of PLP.


Asunto(s)
Amputados , Corteza Motora , Humanos , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Extremidad Superior
9.
Medicine (Baltimore) ; 102(5): e32766, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36749233

RESUMEN

Accumulating studies demonstrated that DNA methylation may be potential prognostic hallmarks of various cancers. However, few studies have focused on the power of DNA methylation for prognostic prediction in patients with stage III to IV ovarian cancer (OC). Therefore, constructing a methylomics-related indicator to predict overall survival (OS) of stage III to IV OC was urgently required. A total of 520 OC patients with 485,577 DNA methylation sites from TCGA database were selected to develop a robust DNA methylation signature. The 520 patients were clustered into a training group (70%, n = 364 samples) and an internal validation group (30%, n = 156). The training group was used for digging a prognostic predictor based on univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO) as well as multivariate Cox regression analysis. The internal and external validation group (ICGC OV-AU project) were used for validating the predictive robustness of the predictor based on receiver operating characteristic (ROC) analysis and Kaplan-Meier survival analysis. We identified a 21-DNA methylation signature-based classifier for stage III-IV OC patients' OS. According to ROC analysis in the internal validation, external validation and entire TCGA set, we proved the high power of the 21-DNA methylation signature for predicting OS (area under the curve [AUC] at 1, 3, 5 years in internal validation set (0.782, 0.739, 0.777, respectively), external validation set (0.828, 0.760, 0.741, respectively), entire TCGA set (0.741, 0.748, 0.781, respectively). Besides, a nomogram was developed via methylation risk score as well as a few clinical variables, and the result showed a high ability of the predictive nomogram. In summary, we used integrated bioinformatics approaches to successfully identified a DNA methylation-associated nomogram, which can predict effectively the OS of patients with stage III to IV OC.


Asunto(s)
Neoplasias de los Genitales Masculinos , Neoplasias Ováricas , Humanos , Femenino , Masculino , Nomogramas , Carcinoma Epitelial de Ovario , Metilación de ADN , Área Bajo la Curva
10.
Phys Chem Chem Phys ; 24(48): 29693-29699, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453524

RESUMEN

The bilayer SnP3 is recently predicted to exfoliate from its bulk phase, and motivated by the transition of the metal-to-semiconductor when the bulk SnP3 is converted to the bilayer, we study the thermoelectric performance of the bilayer SnP3 using first-principles combined with Boltzmann transport theory and deformation potential theory. The results indicate that the bilayer SnP3 is an indirect band gap semiconductor and possesses high carrier mobility. The high carrier mobility results in a large Seebeck coefficient observed in both n- and p-doped bilayer SnP3, which is helpful for acquiring a high figure of merit (ZT). Moreover, by analyzing the phonon spectrum, relaxation time, and joint density of states, we found that strong phonon scattering makes the phonon thermal conductivity extremely low (∼0.8 W m-1 K-1 at room temperature). Together with a high power factor and a low phonon thermal conductivity, the maximum ZT value can reach up to 3.8 for p-type doping at a reasonable carrier concentration, which is not only superior to that of the monolayer SnP3, but also that of the excellent thermoelectric material SnSe. Our results shed light on the fact that bilayer SnP3 is a promising thermoelectric material with a better performance than its monolayer phase.

11.
Bone Joint Res ; 11(8): 518-527, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35909337

RESUMEN

AIMS: To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope. METHODS: Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system. RESULTS: Surgical DMM with or without stereomicroscope led to decrease in the mean of weightbearing percentages (-20.64% vs -21.44%, p = 0.792) and paw withdrawal response thresholds (-21.35% vs -24.65%, p = 0.327) of the hind limbs. However, the coefficient of variation (CV) of weight-bearing percentages and paw withdrawal response thresholds in naked-eye group were significantly greater than that in the microscope group (19.82% vs 6.94%, p < 0.001; 21.85% vs 9.86%, p < 0.001). The gait analysis showed a similar pattern. Cartilage degeneration was observed in both DMM-surgery groups, evidenced by increased OARSI scores (summed score: 11.23 vs 11.43, p = 0.842), but the microscope group showed less variation in OARSI score than the naked-eye group (CV: 21.03% vs 32.44%; p = 0.032). CONCLUSION: Although surgical DMM aided by stereomicroscope is technically difficult, it produces a relatively more homogeneous OA model in terms of the discrete degree of pain behaviours and histopathological grading when compared with surgical DMM without stereomicroscope.Cite this article: Bone Joint Res 2022;11(8):518-527.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35742297

RESUMEN

In modern societies, the air quality in vehicles has received extensive attention because a lot of time is spent within the indoor air compartment of vehicles. In order to further understand the level of air quality under different conditions in new vehicles, the vehicle interior air quality (VIAQ) in new vehicles with three different brands was investigated under static and driving conditions, respectively. Air sampling and analysis are conducted under the requirement of HJ/T 400-2007. Static vehicle tests demonstrate that with the increasing of vehicle interior air temperature in sunshine conditions, a higher concentration and different types of volatile organic compounds (VOCs) release from the interior materials than that in the environment test chamber, including alkanes, alcohols, ketones, benzenes, alkenes, aldehydes, esters and naphthalene. Driving vehicle tests demonstrate that the concentration of VOCs and total VOCs (TVOC) inside vehicles exposed to high temperatures will be reduced to the same level as that in the environment test chamber after a period of driving. The air pollutants mainly include alkanes and aromatic hydrocarbons. However, the change trends of VOCs and TVOC vary under different conditions according to various kinds of factors, such as vehicle model, driving speed, air exchange rate, temperature, and types of substance with different boiling points inside the vehicles.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Alcanos , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis
13.
J Colloid Interface Sci ; 623: 617-626, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35598488

RESUMEN

Constructing heterostructure is an efficient method to provide more active sites and optimize electronic structure for improving the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performance. Herein, the 3D FeOOH@Co3O4 heterostructure was constructed using FeOOH layer (10-20 nm) coated on the surface of Co3O4 nanoneedles through the strong hydrolysis of Fe3+. The FeOOH@Co3O4 heterostructure not only retains the nanoneedle structure with open frameworks, but also improves the specific surface area and expedites the charge transfer. The FeOOH@Co3O4-240 heterostructure affords a remarkable OER performance with low overpotential of 228 mV at 10 mA·cm-2 in 1 M KOH solution. The symmetrical urea electrolyzer using FeOOH@Co3O4-240 as both anode and cathode delivers 10 mA/cm2 at 1.43 V. Density functional theory (DFT) calculations unveil that the FeOOH@Co3O4-240 heterostructure could adjust the electronic structure and strengthen the conductivity. This work offered a facile strategy for designing heterojunction catalysts in an economic way.

14.
Brain Res ; 1786: 147902, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35381215

RESUMEN

BACKGROUND: In traumatic spinal cord injury (SCI), secondary injuries, including cellular death, mitochondrial dysfunction, and vascular injury, have been considered as important causes of impaired functional recovery after SCI. Postinjury angiogenesis has been considered to be a potential strategy for SCI treatment. New-born vessels may play a key role in nerve regeneration, which indicates the importance of angiogenesis in nerve regeneration. Recent studies have revealed the crosstalk between reactive oxygen species (ROS) and angiogenesis. As the main source of cellular ROS, mitochondria have been proven to be essential to the angiogenesis process. METHODS: SCI was established in a T10 clip-compression animal model. Then, the animals received an intraperitoneal injection of MitoQ (5 mg/kg/d) on Days 0, 1, and 2 after surgery. The Basso Mouse Scale (BMS) score and footprint analysis (CatWalk analysis) were performed to evaluate functional recovery after SCI. Immunofluorescence and fluorescence assays (LEL-FITC/CD31/Iba-1/Neurofilament) were performed to evaluate angiogenesis, microglia activation and neural regeneration. RT-qPCR (VEGFR-1, VEGFR-2 and VEGFA) was performed to evaluate angiogenesis-related factor in injured spinal cord. ATP production assay and western-blotting assay (Mfn-1 and Drp-1) were performed to evaluate mitochondrial function in the injured spinal cord. BV2 cells were used as in vitro cell model. After receiving TBHP or TBHP-MitoQ treatment, ELISA and immunofluorescence assays were used to evaluate the level of VEGFA secretion from BV2 cells. A coculture system of HUVECs and BV2 cells was established. Tube formation assays and immunofluorescence assays (CD31) were performed on HUVECs in a coculture system to evaluate angiogenesis promotion. ATP production assays were performed to evaluate mitochondrial function in BV2 cells. MitoSOX Red and DCFH-DA staining were performed to evaluate mitochondrial and cellular ROS. RESULTS: In vitro MitoQ promoted the secretion of VEGFA from BV2 cells, which was verified through ELISA and immunofluorescence assays. The angiogenic promotion of MitoQ-treated BV2 cells was evaluated by tube formation and immunofluorescence assays (CD31) in a coculture system of BV2 cells and HUVECs. MitoQ inhibited cellular and mitochondrial-derived ROS in TBHP-treated BV2 cells. ATP production was increased in MitoQ-treated BV2 cells. To verify MitoQ's effect in vivo, a T10 clip-compression animal model was established successfully. MitoQ significantly promoted functional recovery, as shown by the BMS assay and gait analysis. The promotion of neural regeneration was identified through immunofluorescence assay of neurofilament. Immunofluorescence and fluorescence assays (LEL-FITC/CD31/Iba-1) and RT-qPCR (VEGFR-1, VEGFR-2 and VEGFA) indicated that MitoQ could promote angiogenesis and inhibit macrophage/microglia activation in lesion-site after SCI. Enhanced ATP production and increased Mfn-1 with decreased Drp-1 protein expression showed MitoQ could promote mitochondrial function in SCI. CONCLUSION: The mitochondrial-specific antioxidant MitoQ promotes functional recovery and tissue preservation through the enhancement of angiogenesis with the modification of mitochondrial function after SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacología , Ratones , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función/fisiología , Médula Espinal/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Front Neurosci ; 15: 704079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354568

RESUMEN

The right parietal lobe plays an important role in body image, and disorders of body image emerge after lesions in the parietal lobe or with parietal lobe epilepsy. Body image disorder also often accompanies upper-limb amputation, in which the patient misperceives that their missing limb is still part of their body. Cortical reorganization is known to occur after upper-limb amputation, but it is not clear how widespread and to what degree functional connectivity (FC) is reorganized post-amputation, nor whether such changes might be related to misperceptions of body image. Twenty-four subjects who had a traumatically upper-limb amputees (ULAs) and 24 age-matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. Regions of interest (ROIs) in the right superior parietal gyrus (SPG_R) and right inferior parietal lobule (IPL_R) were defined using BrainNet Viewer. We calculated the amplitude of low-frequency fluctuations (ALFF) in ROIs and correlated the ROI mean amplitude of low-frequency fluctuations (mALFF) and mean scores on the phantom limb sensation (PLS) scale and beck depression index (BDI). We also calculated ROIs and whole-brain FC. Compared to the HC group, we observed significantly increased activation (mALFF) in ROIs of the ULA group. Moreover, correlation analyses revealed a significant positive correlation between ROI mALFF and scores on the PLS. There was a significant negative correlation between the SPG_R mALFF and BDI scores. Seed-based, whole-brain FC analysis revealed that FC in the ULA group significantly decreased in many brain regions across the entire brain. The right parietal lobe appears to be involved in some aspect of body awareness and depression in amputation patients. Upper-limb amputation results not only in reorganization in the local brain area formerly representing the missing limb, but also results in more widespread reorganization through FC changes in whole brain.

17.
J Colloid Interface Sci ; 561: 576-584, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31744612

RESUMEN

Synthesis of mesoporous (Fe/Ni)(P/S) dendritic nanorods on commercial 304L stainless steel mesh (SSM) was accomplished by initial anodic oxidation and subsequent co-sulfuration/phosphorization process. The mesoporous (Fe/Ni)(P/S) dendritic nanorods were obtained as a freestanding and stable catalyst for oxygen evolution reaction (OER). The mechanism of formation of mesoprous structure with nanorods is due to in-situ removal of Cr atoms (from the hard template of SSM) while the O2 bubbles released during OER served as dynamic bubble template (soft template). The as-prepared sample exhibited overpotentials of 173 mV at 10 mA cm-2 and 270 mV at 100 mA cm-2, which exceeded those that were recently reported using surface modified stainless steel-based catalysts for OER in alkaline condition. Moreover, the (Fe/Ni)(P/S) nanorods showed a remarkable Tafel slope of 65.7 mV dec-1 with stable activity beyond two months with only 2.5% fluctuation. The above outstanding performance could be attributed to the unique morphology with highly exposed active sites and the control of electronic structure by co-treatment with P and S. This work presents an efficient way to modify SSM for use as an inexpensive and durable OER catalyst.

18.
Small ; 15(50): e1905201, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31721424

RESUMEN

Low cost and highly efficient bifuctional catalysts for overall water electrolysis have drawn considerable interests over the past several decades. Here, rationally synthesized mesoporous nanorods of nickel-cobalt-iron-sulfur-phosphorus composites are tightly self-supported on Ni foam as a high-performance, low cost, and stable bifunctional electrocatalyst for water electrolysis. The targeted designing and rational fabrication give rise to the nanorod-like morphology with large surface area and excellent conductivity. The NiCoFe-PS nanorod/NF can reach 10 mA cm-2 at a small overpotential of 195 mV with a Tafel slope of 40.3 mV dec-1 for the oxygen evolution reaction and 97.8 mV with 51.8 mV dec-1 for the hydrogen evolution reaction. Thus, this bifunctional catalyst shows low potentials of 1.52 and 1.76 V at 10 and 50 mA cm-2 toward overall water splitting with excellent stability for over 200 h, which are superior to most non-noble metal-based bifunctional electrocatalysts recently. This work provides a new strategy to fabricate multiple metal-P/S composites with the mesoporous nanorod-like structure as bifunctional catalysts for overall water splitting.

19.
Chem Commun (Camb) ; 54(96): 13543-13546, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30443652

RESUMEN

A facile molten-salt (MS) route for the scalable synthesis of free-standing, long-range oriented and corrugated graphene-like sheets from a copper phthalocyanine (CuPc) precursor is reported. Their unique arrangement and transformation behavior in molten potassium chloride (KCl) play a key role in promoting the successful synthesis of the anisotropic nanostructure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...