RESUMEN
Phytopathogens represent an ongoing threat to crop production and a significant impediment to global food security. During the infection process, these pathogens spatiotemporally deploy a large array of effectors to sabotage host defense machinery and/or manipulate cellular pathways, thereby facilitating colonization and infection. However, besides their pivotal roles in pathogenesis, certain effectors, known as avirulence (AVR) effectors, can be directly or indirectly perceived by plant resistance (R) proteins, leading to race-specific resistance. An in-depth understanding of the intricate AVR-R interactions is instrumental for genetic improvement of crops and safeguarding them from diseases. Magnaporthe oryzae (M. oryzae), the causative agent of rice blast disease, is an exceptionally virulent and devastating fungal pathogen that induces blast disease on over 50 monocot plant species, including economically important crops. Rice-M. oryzae pathosystem serves as a prime model for functional dissection of AVR effectors and their interactions with R proteins and other target proteins in rice due to its scientific advantages and economic importance. Significant progress has been made in elucidating the potential roles of AVR effectors in the interaction between rice and M. oryzae over the past two decades. This review comprehensively discusses recent advancements in the field of M. oryzae AVR effectors, with a specific focus on their multifaceted roles through interactions with corresponding R/target proteins in rice during infection. Furthermore, we deliberated on the emerging strategies for engineering R proteins by leveraging the structural insights gained from M. oryzae AVR effectors.
RESUMEN
Gram-positive S. aureus is one of the leading pathogens for death associated with antimicrobial resistance. The ß-lactamase (Bla) secreted by methicillin-resistant S. aureus (MRSA) hydrolyzes nearly all ß-lactam antibiotics, leaving only a few antibiotics available for the clinical treatment of MRSA infections. Thereby, a Bla-responsive peptide (BLAP) is designed here with the capacity of inhibiting MRSA infection through mimicking the host defense mechanism of human defensin-6. The BLAP comprising a self-assembling peptide sequence can respond specifically to the secreted Bla and assemble in situ surrounding MRSA. The assembled nanofibrous network is able to trap MRSA, preventing its invasion into the host cells effectively. As a consequence, the intramuscular injection of BLAP significantly restricted bacterial infection and abscess formation in mice. The biomimetic BLAP holds great potential for the efficient treatment of drug-resistant gram-positive bacterial infections.
RESUMEN
This study utilized computational simulation and surface molecular imprinting technology to develop a magnetic metal-organic framework molecularly imprinted polymer (Fe3O4@ZIF-8@SMIP) capable of selectively recognizing and detecting multiple fluoroquinolones (FQs). The Fe3O4@ZIF-8@SMIP material was synthesized using the "common" template-ofloxacin, identified by computational simulation, demonstrating notable adsorption capacity (88.61-212.93 mg g-1) and rapid mass-transfer features (equilibration time: 2-3 min) for all tested FQs, consistent with Langmuir adsorption model. Subsequently, this material was employed as a magnetic solid-phase-extraction adsorbent for adsorption and detection of multiple FQs by combining with high performance liquid chromatography. The developed method exhibited good linearity for various FQs within the concentration range of 0.1-500 µg L-1, with low limit of detection (0.0605-0.1529 µg L-1) and limit of quantitation (0.2017-0.5097 µg L-1). Satisfactory recoveries (88.38-103.44%) were obtained when applied to spiked food samples, demonstrating the substantial potential of this Fe3O4@ZIF-8@SMIP material for rapid enrichment and identification for multiple FQs residues.
Asunto(s)
Fluoroquinolonas , Contaminación de Alimentos , Estructuras Metalorgánicas , Impresión Molecular , Extracción en Fase Sólida , Adsorción , Estructuras Metalorgánicas/química , Fluoroquinolonas/análisis , Fluoroquinolonas/química , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodos , Contaminación de Alimentos/análisis , Cromatografía Líquida de Alta Presión , Polímeros Impresos Molecularmente/química , Simulación por Computador , Límite de DetecciónRESUMEN
In this study, a novel acetylcholinesterase (AChE)-based electrochemical sensor was successfully constructed using two-dimensional MXene, carbon nanohorns (CNHs) and polypyrrole (PPy) as the substrate material for the detection of methyl parathion (MP) residue. The multidimensional MXene/CNHs composite, formed through electrostatic self-assembly, provided a high specific surface area and excellent conductivity. With an active surface area of 0.1062 cm2, the composite provided numerous electroactive sites for AChE immobilization and facilitated electron diffusion at the sensing interface, amplifying the electrochemical signals. Additionally, polypyrrole (PPy) improved AChE adhesion on the electrode surface, further enhancing the stability of the sensor. The proposed sensor exhibited a wide linear range (0.002-346 ng mL-1) and low detection limit (0.00021 ng mL-1) for MP. This study offers an innovative strategy to detect MP, showcasing the potential of two-dimensional materials in electrochemical sensing.
Asunto(s)
Acetilcolinesterasa , Técnicas Biosensibles , Técnicas Electroquímicas , Enzimas Inmovilizadas , Metil Paratión , Nanocompuestos , Polímeros , Pirroles , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Técnicas Biosensibles/instrumentación , Carbono/química , Enzimas Inmovilizadas/química , Límite de Detección , Metil Paratión/análisis , Nanocompuestos/química , Polímeros/química , Pirroles/químicaRESUMEN
Aiming at the problem that the cement production process is inherently affected by uncertainty, time delay, and strong coupling among variables, this paper proposed a novel soft sensor of free calcium oxide in a cement clinker. The model utilizes a dual-parallel integrated structure with an optimized integration of one-dimensional convolutional neural networks, long and short-term memory networks, graphical neural networks, and extreme gradient boosting. The proposed model can mitigate the risks associated with overfitting while incorporating the strengths of each individual model and excels in extracting both local and global features as well as temporal and spatial characteristics from the original time series data, ensuring its stability. The experimental results demonstrate that this dual-parallel integrated model exhibits superior robustness, predictive accuracy, and generalization capabilities when compared to single models or enhancements made to other deep learning algorithms.
RESUMEN
In this work, the perovskite fluorescent nanocrystals (CsPbBr3) were successfully synthesized and wrapped with SiO2 shell, utilized for the assembly of solid-state detection strip capable of conveniently and specifically detection of aflatoxin B1 (AFB1). The SiO2 coating aimed to enhance the stability of CsPbBr3 nanocrystals. The resulting CsPbBr3@SiO2 material exhibited remarkable fluorescence properties, and further self-assembled onto solid-state plate, generating AFB1-specific quenched fluorescence at a specific wavelength of 515 nm. When combined with the capture of AFB1 by magnetic nanoparticles conjugated with aptamers (MNPs-Apt), it was achieved the good separation and specific detection of AFB1 toxin in food matrices. The constructed fluorescent solid-state detection strip based on CsPbBr3@SiO2 exhibited good response to AFB1 toxin within a linear range of 0.1-100 ng mL-1 and an impressive detection limit as low as 0.053 ng mL-1. This presents a new strategy for the rapid screening and convenient detection of highly toxic AFB1.
Asunto(s)
Aflatoxina B1 , Aptámeros de Nucleótidos , Compuestos de Calcio , Contaminación de Alimentos , Nanopartículas , Óxidos , Dióxido de Silicio , Titanio , Aflatoxina B1/análisis , Aflatoxina B1/química , Contaminación de Alimentos/análisis , Dióxido de Silicio/química , Compuestos de Calcio/química , Óxidos/química , Nanopartículas/química , Titanio/química , Aptámeros de Nucleótidos/química , Límite de Detección , FluorescenciaRESUMEN
A series of studies have confirmed the relationship between circular RNAs (circRNAs) and metabolic diseases. Hsa_circ_0006260 has been reported to be lowly expressed in the placenta of gestational diabetes mellitus (GDM) patients, but the underlying mechanism and its biological functions remain obscure. Placental tissues were collected from 37 pregnant women with normal glucose tolerance (NGT) and 37 pregnant women with GDM. Expression changes of hsa_circ_0006260 in placentas and high glucose (HG)-stimulated HTR-8/SVneo cells were detected using real-time quantitative polymerase chain reaction. Cell viability and migration were determined by cell counting and transwell assays, respectively. Measurement of cytokines was done by enzyme-linked immunosorbent assay. Cell apoptosis was estimated by flow cytometry assay. The molecular mechanisms were identified using dual-luciferase reporter and RNA-binding protein immunoprecipitation assays. Hsa_circ_0006260 expression was remarkably lowered in GDM patient-derived placentas and HG-stimulated HTR-8/SVneo cells. Functionally, hsa_circ_0006260 overexpression weakened HG-mediated repression of HTR-8/SVneo cell viability and migration, as well as promotion of HTR-8/SVneo cell inflammatory response and apoptosis. Mechanistically, hsa_circ_0006260 functioned as a miR-770-5p decoy to mediate fibronectin type III domains containing protein 5 (FNDC5) expression. Ectopic expression of miR-770-5p weakened hsa_circ_0006260 overexpression-mediated repression of HG-induced HTR-8/SVneo cell dysfunction. Also, FNDC5 knockdown lessened miR-770-5p overexpression-mediated promotion of HG-induced HTR-8/SVneo cell dysfunction. Our findings manifested a novel mechanism by which hsa_circ_0006260 could lower HG-induced HTR-8/SVneo cell dysfunction by upregulating FNDC5 via binding to miR-770-5p, which shed new light on circRNA mediated GDM pathogenesis.
RESUMEN
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Asunto(s)
COVID-19 , Pentoxifilina , Síndrome de Dificultad Respiratoria , Animales , Ratones , Humanos , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Edaravona/uso terapéutico , Pandemias , Pulmón , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Citocinas , Concentración de Iones de Hidrógeno , LipopolisacáridosRESUMEN
In recent years, the anticancer effects of disulfiram, a clinical drug for anti-alcoholism, are confirmed. However, several defects limit the clinical translation of disulfiram obviously, such as Cu(II)-dependent anticancer activity, instability, and non-selectivity for cancer cells. Herein, a phosphate and hydrogen peroxide dual-responsive nanoplatform (PCu-HA-DQ) is reported, which is constructed by encapsulating disulfiram prodrug (DQ) and modifying hyaluronic acid (HA) on copper doping metal-organic frameworks (PCu MOFs). PCu-HA-DQ is expected to accumulate in tumor by targeting CD-44 receptors and enable guidance with magnetic resonance imaging. Inside the tumor, Cu(DTC)2 will be generated in situ based on a dual-responsive reaction. In detail, the high concentration of phosphate can induce the release of DQ, after that, the intracellular hydrogen peroxide will further mediate the generation of Cu(DTC)2 . In vitro and in vivo results indicate PCu-HA-DQ can induce the apoptosis as well as immunogenic cell death (ICD) of tumor cells distinctly, leading to enhanced immune checkpoint inhibitor (ICI) efficacy by combining the anti-programmed death-1 antibody. This work provides a portable strategy to construct a dual-responsive nanoplatform integrating tumor-targeted ability and multi-therapy, and the designed nanoplatform is also an ICD inducer, which presents a prospect for boosting systemic antitumor immunity and ICI efficacy.
Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Humanos , Profármacos/uso terapéutico , Disulfiram/uso terapéutico , Muerte Celular Inmunogénica , Cobre/farmacología , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Fosfatos , Línea Celular Tumoral , Microambiente Tumoral , Nanopartículas/uso terapéuticoRESUMEN
Despite immunotherapy having revolutionized cancer therapy, the efficacy of immunotherapy in triple-negative breast cancer (TNBC) is seriously restricted due to the insufficient infiltration of mature dendritic cells (DCs) and the highly diffusion of immunosuppressive cells in the tumor microenvironment. Herein, an immunomodulatory nanoplatform (HA/Lipo@MTO@IMQ), in which the DCs could be maximally activated, was engineered to remarkably eradicate the tumor via the combination of suppressive tumor immune microenvironment reversal immunotherapy, chemotherapy, and photothermal therapy. It was noticed that the immunotherapy efficacy could be significantly facilitated by this triple-assistance therapy: First, a robust immunogenic cell death (ICD) effect was induced by mitoxantrone hydrochloride (MTO) to boost DCs maturation and cytotoxic T lymphocytes infiltration. Second, the powerful promaturation property of the toll-like receptor 7/8 (TLR7/8) agonist on DCs simultaneously strengthened the ICD effect and restricted antitumor immunity to the tumor bed and lymph nodes. On this basis, tumor-associated macrophages were also dramatically repolarized toward the antitumor M1 phenotype in response to TLR7/8 agonist to intensify the phagocytosis and reverse the immunosuppressive microenvironment. Furthermore, the recruitment of immunocompetent cells and tumor growth inhibition were further promoted by the photothermal characteristic. The nanoplatform with no conspicuous untoward effects exhibited a splendid ability to activate the systemic immune system so as to increase the immunogenicity of the tumor microenvironment, thus enhancing the tumor killing effect. Taken together, HA/Lipo@MTO@IMQ might highlight an efficient combination of therapeutic modality for TNBC.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Fototérmica , Receptor Toll-Like 7 , Microambiente Tumoral , Factores Inmunológicos , Adyuvantes Inmunológicos , Inmunosupresores , Inmunoterapia , Línea Celular TumoralRESUMEN
Recently, disulfiram (DSF), an anti-alcoholism drug, has attracted increasing biomedical interest due to its anticancer effects. However, the anticancer activity of DSF is Cu(II)-dependent and it is extremely unstable, which severely hinders its clinical translation. Herein, we report the fabrication of a multifunctional nanoplatform (MCDGF) that can improve the stability of diethyldithiocarbamate (DTC), a main metabolite of DSF, by modifying the aryl boronic ester group to form a prodrug (DQ), and also realize the in situ generation of Cu(DTC)2, which relies on a cascade reaction. The delivered Cu/DQ induces immunogenic cell death (ICD) and powerfully enhances immune responses of cytotoxic T lymphocytes (CTLs) and the infiltration of dendritic cells as well as T cells. Furthermore, the grafted glucose oxidase (GOx) decomposes glucose, thus "starving" the cancer cells and providing H2O2 for the production of Cu(DTC)2. More importantly, H2O2 significantly promotes the polarization of macrophages to the anti-tumor subtype. The nano-carrier "mesoporous polydopamine (MPDA)" also displays a good photothermal therapeutic effect. The nanoplatform-integrated chemotherapy, starvation therapy, photothermal therapy, and immunotherapy synergistically stimulated CTL activation and M1 macrophage polarization. Taken together, the as-prepared nanoplatform could regulate the tumor immune microenvironment and eliminate cancer with combined cancer therapy, which will offer a promising strategy for cancer treatment and promote the clinical application of DSF in breast cancer.
Asunto(s)
Neoplasias de la Mama , Neoplasias , Humanos , Femenino , Microambiente Tumoral , Peróxido de Hidrógeno/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Disulfiram/farmacología , Neoplasias/tratamiento farmacológico , CobreRESUMEN
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
RESUMEN
As a type of nanomaterials with enzyme-mimetic catalytic properties, nanozymes have attracted wide concern in biological detection. H2O2 was the characteristic product of diverse biological reactions, and the quantitative analysis for H2O2 was an important way to detect disease biomarkers, such as acetylcholine, cholesterol, uric acid and glucose. Therefore, there is of great significance for developing a simple and sensitive nanozyme to detect H2O2 and disease biomarkers by combining with corresponding enzyme. In this work, Fe-TCPP MOFs were successfully prepared by the coordination between iron ions and porphyrin ligands (TCPP). In addition, the peroxidase (POD) activity of Fe-TCPP was proved, in detail, Fe-TCPP could catalyze H2O2 to produce ·OH. Herein, glucose oxidase (GOx) was chosen as the model to build cascade reaction by combining Fe-TCPP to detect glucose. The results indicated glucose could be detected by this cascade system selectively and sensitively, and the limit of detection of glucose was achieved to 0.12 µM. Furthermore, a portable hydrogel (Fe-TCPP@GEL) was further established, which encapsulated Fe-TCPP MOFs, GOx and TMB in one system. This functional hydrogel could be applied for colorimetric detection of glucose by coupling with a smartphone easily.
Asunto(s)
Estructuras Metalorgánicas , Porfirinas , Glucosa/análisis , Peróxido de Hidrógeno , Colorimetría/métodos , Peroxidasas , Biomarcadores , Glucosa OxidasaRESUMEN
To strengthen the antitumor efficacy and avoid toxicity to normal cells of cisplatin and triptolide, herein, an acid and glutathione (GSH) dual-controlled nanoplatform for enhanced cancer treatment through the synergy of both "1+1" apoptosis and "1+1" ferroptosis is designed. Remarkably, ZIF8 in response to tumor microenvironment enhances drug targeting and protects drugs from premature degradation. Meanwhile, the PtIV center can be easily reduced to cisplatin because of the large amount of GSH, thus liberating the triptolide as the coordinated ligand. The released cisplatin and hemin in turn boost the tumor cell "1+1" apoptosis through chemotherapy and photodynamic therapy, respectively. Furthermore, GSH reduction through PtIV weakens the activation of glutathione peroxidase 4 (GPX4) effectively. The released triptolide can inhibit the expressions of GSH by regulating nuclear factor E2 related factor 2 (Nrf2), further promoting membrane lipid peroxidation, thus "1+1" ferroptosis can be achieved. Both in vitro and in vivo results demonstrate that the nanosystem can not only perform superior specificity and therapeutic outcomes but also reduce the toxicity to normal cells/tissues of cisplatin and triptolide effectively. Overall, the prodrug-based smart system provides an efficient therapeutic strategy for cancer treatment by virtue of the effect of enhanced "1+1" apoptosis and "1+1" ferroptosis therapies.
Asunto(s)
Neoplasias de la Mama , Diterpenos , Profármacos , Humanos , Femenino , Cisplatino/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Profármacos/farmacología , Línea Celular Tumoral , Microambiente TumoralRESUMEN
LPS-induced injury in lung epithelial cells is a crucial part of the process of acute lung injury (ALI). The aim of this study is to explore whether Xanthorrhizol, a medicine that has antioxidant and anti-inflammatory activity, could mitigate the injury of lung epithelial cells caused by LPS. Mouse lung epithelial cell line (MLE-12 cells) were treated with LPS in the absence and presence of Xanthorrhizol. As a results, we observed that LPS could induce MLE-12 cells death, mitochondrial dysfunction, oxidative stress and inflammation, and activate MAPK signaling pathways. However, Xanthorrhizol mitigated the injury in MEL-12 caused by LPS by promoting cell viability and MDA, GSH production as well as inhibiting LDH release, mitochondria damage, IL-1ß, IL-6 and TNF-α production and the phosphorylation levels of ERK, P38 and JNK. Our results indicated that Xanthorrhizol could protect lung epithelial cells from LPS-induced injury, more likely by inhibiting the phosphorylation of MAPK pathway related proteins.
Asunto(s)
Lipopolisacáridos , Pulmón , Animales , Ratones , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés OxidativoRESUMEN
Amyloid-ß oligomers (AßO) have been identified as core biomarkers for early diagnosis of Alzheimer's disease (AD). For the first time, a "turn-on" unlabeled colorimetric aptasensor based on aptamer-polythymine (polyT)-polyadenine (polyA)-gold nanoparticles (pA-pT-apt@AuNPs) was developed for highly sensitive and specific detection of amyloid-ß1-40 oligomers (Aß40-O). In this system, polyA sequence could preferentially anchor onto AuNPs surface as well as reduce the non-specific adsorption, and the aptamer could form upright conformation for the specific recognition of Aß40-O. The aggregation of pA-pT-apt@AuNPs was induced by MgCl2. However, the addition of Aß40-O enabled the aptamer fold adaptively upon recognition and aptamer-Aß40-O complex formed surrounding AuNPs, effectively stabilizing pA-pT-apt@AuNPs against salt-induced aggregation, therefore the color of pA-pT-apt@AuNPs solution still retained red. Based on this principle, the proposed aptasensor exhibited high sensitivity with the limit of detection of 3.03 nM and a linear detectable range from 10.00 nM to 100.0 nM. The superb sensitivity was achieved via the optimization of the length of polyA and polyT spacer. This pA-pT-apt@AuNPs based colorimetric aptasensor provides a rapid, cost-effective, highly sensitive detection method for Aß40-O, which is valuable for the early diagnosis of AD.
Asunto(s)
Enfermedad de Alzheimer , Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Colorimetría/métodos , Péptidos beta-Amiloides , Oro , Enfermedad de Alzheimer/diagnóstico , Técnicas Biosensibles/métodos , Límite de DetecciónRESUMEN
Rechargeable aqueous zinc-ion batteries (AZIBs) are among the most promising candidates for next-generation energy-storage devices. However, the large voltage polarisation and infamous dendrite growth hinder the practical application of AZIBs owing to their complex interfacial electrochemical environment. In this study, a hydrophobic zinc chelate-capped nano-silver (HZC-Ag) dual interphase is fabricated on the zinc anode surface using an emulsion-replacement strategy. The multifunctional HZC-Ag layer remodels the local electrochemical environment by facilitating the pre-enrichment and de-solvation of zinc ions and inducing homogeneous zinc nucleation, thus resulting in reversible dendrite-free zinc anodes. The zinc deposition mechanism on the HZC-Ag interphase is elucidated by density functional theory (DFT) calculations, dual-field simulations, and in situ synchrotron X-ray radiation imaging. The HZC-Ag@Zn anode exhibited superior dendrite-free zinc stripping/plating performance and an excellent lifespan of >2000 h with ultra-low polarisation of ≈17 mV at 0.5 mA cm-2 . Full cells coupled with a MnO2 cathode showed significant self-discharge inhibition, excellent rate performance, and improved cycling stability for >1000 cycles. Therefore, this multifunctional dual interphase may contribute to the design and development of dendrite-free anodes for high-performance aqueous metal-based batteries.
RESUMEN
Doxorubicin (DOX) is a potent cytotoxic chemotherapeutic agent limited in clinical application owing to its cumulative and irreversible cardiotoxicity. Circ_0001312 is highly expressed in patients with heart failure. However, it is still unclear whether circ_0001312 plays any roles in DOX-induced cardiotoxicity.Human AC16 cardiomyocytes in functional group were stimulated with DOX. The levels of genes and proteins were detected by qRT-PCR and western blotting. The proliferation, apoptosis, as well as inflammatory and oxidative injury in cardiomyocytes were investigated. Dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays were utilized to confirm the binding between miR-409-3p and circ_0001312 or HMGB1 (high-mobility group box 1). Exosomes were isolated by using the commercial kit and identified by transmission electron microscopy (TEM) and nanoparticle-tracking analysis (NTA).DOX impaired cardiomyocyte proliferation and induced apoptotic, inflammatory, and oxidative injury in cells. Furthermore, it promoted circ_0001312 expression, and the knockdown of circ_0001312 could reverse DOX-evoked cardiomyocyte injury. In terms of mechanics, circ_0001312 bound competitively to miR-409-3p to up-regulate HMGB1, which was a target of miR-409-3p. DOX decreased the miR-409-3p but increased the HMGB1 expression in cardiomyocytes. Functionally, miR-409-3p inhibition attenuated the protective action of circ_0001312 silencing on cardiomyocytes under DOX treatment. Moreover, miR-409-3p could abate DOX-evoked apoptosis, and inflammation and oxidative stress in cardiomyocytes, and these effects were counteracted by HMGB1 overexpression. In addition, circ_0001312 was secreted by exosomes and could be transmitted via exosomes.Circ_0001312 reversed the cytotoxic effects mediated by DOX on cardiomyocytes via the miR-409-3p/HMGB1 axis. Besides, it was released to the extracellular space by exosomes.
Asunto(s)
Proteína HMGB1 , Insuficiencia Cardíaca , MicroARNs , ARN Circular , Humanos , Apoptosis , Cardiotoxicidad , Doxorrubicina/efectos adversos , Proteína HMGB1/genética , MicroARNs/genética , ARN Circular/genéticaRESUMEN
The therapeutic application of chemodynamic therapy (CDT) is severely limited by the insufficient intracellular H2O2 and acidity in tumor. Herein, an acid-sensitive nanoplatform (ZIF67-ICG/TAM@GOx) to promote H2O2 and acidity enhancement through intracellular cyclic amplification for enhanced CDT is rationally designed. Notably, the acidic conditions of the tumor microenvironment (TME) can turn on the switch of the nanoplatform, setting free the loaded tamoxifen (TAM) and indocyanine green (ICG). The mitochondrial respiration inhibitor TAM and the superoxide dismutase-mimicking ZIF67 synergistically lead to an increase in the content of O2 and H2O2, accelerating the depletion of ß-d-glucose by GOx to generate gluconate and H2O2. The gluconate in turn boosts the acidity to facilitate the collapse of nanoparticles, further significantly promoting the accumulation of intracellular H2O2 through a positive circulation. Consequently, the amplificated endogenous H2O2 is catalyzed by Co2+ to liberate hydroxyl radicals (â¢OH). Besides, ICG-mediated photothermal therapy (PTT) and GOx-induced starvation therapy along with CDT realize the synergistic cancer treatment. Importantly, in vitro and in vivo experiments verified that the nanoplatform performed superior specificity and excellent therapeutic responses. The smart nanoplatform overcomes H2O2 and acidity deficiency simultaneously for intensive CDT, providing new prospects for the development of biocompatible cancer synergistic therapy strategies.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Peróxido de Hidrógeno , Terapia Fototérmica , Gluconatos , Glucosa , Verde de Indocianina , Tamoxifeno , Microambiente Tumoral , Línea Celular TumoralRESUMEN
Up to now, chemotherapy is still the main strategy for cancer treatment. However, the emergence of chemo-resistance and systemic side effects often seriously affects the treatment and prognosis. Herein, an intelligent nanoplatform based on dendritic mesoporous organosilica nanoparticles (DMON) is constructed. The encapsulated phase-change material, 1-tetradecanol (TD) can serve as a "doorkeeper" and enable the responsive release of drugs based on the temperature changes. Meanwhile, polyethylene glycol (PEG) is used to improve the dispersibility and biocompatibility. Cisplatin is chosen as the model of chemotherapy drug, which is co-loaded with indocyanine green (ICG) in DMON to produce DMON-PEG-cisplatin/ICG-TD (DPCIT). Exciting, the hyperthermia and reactive oxygen species induced by ICG under the NIR-laser irradiation will initiate a phase transition of TD to release cisplatin, thus leading a combined therapy (chemo/photothermal/photodynamic therapy). The results indicated that under laser irradiation, DPCIT can kill cancer cells and inhibit tumor growth efficiently. In addition, the designed nanoplatform reveals minimal systemic toxicity in vivo, in contrast, the distinct liver damage can be observed by the direct treatment of cisplatin. Overall, this research may provide a general approach for the targeted delivery and controlled release of chemotherapy drugs to realize a cooperatively enhanced multimodal tumor therapy.