Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 8(1): 169, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090304

RESUMEN

Lung adenocarcinoma (LUAD) is a leading cause of cancer mortality, with many patients facing poor prognosis, particularly those with metastatic or drug-resistant tumors. Homologous recombination genes (HRGs) are crucial in tumor progression and therapy resistance, but their clinical significance in LUAD is not well understood. In this study, we systematically characterize key HRGs in LUAD patients, identifying two distinct HR subtypes associated with different outcomes and biological functions. We establish a 5-gene scoring system (XRCC2, RAD51, BRCA1, FANCA, and CHEK1) that reliably predicts patient outcomes and immunotherapy responses in LUAD. Bioinformatics analysis and clinical validation highlight XRCC2 as a crucial biomarker in LUAD. Functional investigations through in vivo and in vitro experiments reveal the role of XRCC2 in promoting lung cancer migration and invasion. Mechanistically, XRCC2 stabilizes vimentin (VIM) protein expression through deubiquitylation. We predict c-MYC as a potential regulator of XRCC2 and demonstrate that inhibiting c-MYC with compound 10058-F4 reduces XRCC2 and VIM expression. Preclinical studies show the synergistic inhibition of metastasis in vivo when combining 10058-F4 with doxorubicin (Dox). Our findings present a potential personalized predictive tool for LUAD prognosis, identifying XRCC2 as a critical biomarker. The c-Myc-XRCC2-VIM axis emerges as a promising therapeutic target for overcoming lung metastasis. This study provides valuable insights into LUAD, proposing a prognostic tool for further clinical validation and unveiling a potential therapeutic strategy for combating lung metastasis by targeting c-Myc-XRCC2-VIM.

2.
J Sci Food Agric ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177297

RESUMEN

BACKGROUND: Enshi Yulu tea (ESYL) is the most representative of steamed green tea in China, but its aroma formation in processing is unclear. Thus, the ESYL volatiles during the whole industrial processing were investigated using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. RESULTS: A total of 134 volatiles were identified. Among these, 31 differential volatiles [P < 0.05 and variable importance in projection (VIP) > 1] and 25 key volatiles [relative odor activity value (rOAV) and/or the ratio of each rOAV to the maximum rOAV (ROAV) > 1.0] were screened out, wherein ß-ionone and nonanal were the most key odorants. Besides, the sensory evaluation combined with multivariate statistical analysis of volatiles pinpointed spreading, fixation, first drying, and second drying as the key processing steps that have a pronounced influence on the aroma quality of ESYL. Furthermore, the oxidative degradation of unsaturated fatty acids, synthesis of monoterpenes, and degradation of carotenoids were the main metabolic pathway for the formation of key odorants. CONCLUSION: The study provides comprehensive insights into the volatile characteristics during the industrial processing of ESYL and promote our understanding of the aroma formation in steamed green teas. © 2024 Society of Chemical Industry.

3.
Food Chem ; 458: 140145, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943956

RESUMEN

Although Enshi Yulu tea (ESYL) possesses a distinctive fragrance, there is a scarcity of studies focusing on its primary volatiles or aroma genesis. This study aims to elucidate the dynamics in the profiles of aromas and volatiles through aroma profiling analysis and headspace solid-phase microextraction/gas chromatography-mass spectrometry. A total of 10 aroma attributes and 128 volatiles were identified in ESYL, with geraniol and linalool exhibiting the highest levels, and alcohols constituting the predominant proportion. Besides, a relative odor activity value (ROAV) based molecular aroma wheel was constructed, revealing 12 key odorants with ROAVs >1, wherein linalool, ß-ionone, and nonanal ranked highest. Notably, steaming and final drying emerged as critical steps for ESYL aroma development, while the non-enzymatic degradation of fatty acids likely contributed to the formation of its fresh aroma. These findings significantly enhance our comprehension of ESYL aroma formation.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Odorantes/análisis , Manipulación de Alimentos , Té/química , Camellia sinensis/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/análisis
4.
Biomed Pharmacother ; 173: 116408, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479176

RESUMEN

Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Plant Dis ; 108(2): 502-512, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37647089

RESUMEN

Mulberry fruit sclerotiniose is a prevalent disease caused by the fungal species Ciboria shiraiana, C. carunculoides, and Scleromitrula shiraiana of the order Helotiales, and severely affects the production of mulberry. However, these species have only been identified using morphological and rDNA-ITS sequence analyses, and their genetic variation is unclear. To address this, morphological and two-locus (ITS and RPB2) phylogenetic analyses were conducted using culture-dependent and independent methods for 49 samples from 31 orchards across four provinces in China. Illumina MiSeq sequencing was used to assess the fungal communities obtained from fruits varying in disease severity and color from an orchard in Wuhan. Conidial suspensions of C. shiraiana and C. carunculoides isolated from diseased fruits, diseased fruits affected with hypertrophy and pellet sorosis sclerotiniose, and mycelia of Sclerotinia sclerotiorum were determined to be pathogenic to the mulberry cultivar YSD10. However, fruits inoculated with S. sclerotiorum mycelia exhibited nontypical disease symptoms, and mycelia and conidia obtained from C. carunculoides and S. shiraiana strains were not pathogenic. Maximum parsimony and Bayesian analyses using the sequences of the assessed loci indicated species variability with no evidence of geographic specialization. Metagenomic analysis revealed that the diversity of fungal communities was reduced with disease progression. Furthermore, within a single fruit, the presence of two Ciboria spp. was detected. These results provide novel insights into Ciboria spp., revealing the secondary infections caused by conidia in diseased fruits, genetic variations of the pathogens, and the occurrence of coinfection. This improved understanding of fungal pathogens will aid in developing effective disease control strategies.


Asunto(s)
Coinfección , Morus , Micobioma , Frutas , Filogenia , Teorema de Bayes , China
6.
Mol Plant ; 17(1): 4-7, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37990497

RESUMEN

The current apomixis system used in fixing heterozygosity suffers from the problems of low fertility and limited apomixis induction rate. This study implies that egg-cell-specific expression of dandelion's PAR combined with MiMe in hybrid rice can efficiently trigger highly fertile synthetic apomixis for effective clonal propagation of hybrids.


Asunto(s)
Apomixis , Oryza , Oryza/genética , Apomixis/genética , Fertilidad/genética , Fenotipo , Semillas/genética
7.
Plant Cell ; 35(12): 4383-4404, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738159

RESUMEN

The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Giberelinas/metabolismo , Semillas/genética , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Dis ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37622273

RESUMEN

Mulberry (Morus alba L.) has been cultivated for thousands of years in many temperate regions in East Asia and is commonly used to feed silkworms. In May 2021, 5 to 8% incidence of stem blight on 4-year-old mulberry 'Nongsang 14' was observed in several orchards in Nanzhang County, Hubei Province, China. The roots and stems showed symptoms of vascular discoloration, and the tender new shoots, surrounded by white hyphae, were detached easily. Symptomatic stem tissues (5 mm × 5 mm) were excised from the border between diseased and healthy tissues, surface sterilized in a 75% ethanol solution for 30 s and 2.5% sodium hypochlorite for 1.5 min, washed three times in sterile distilled water, then placed on potato dextrose agar (PDA, 250 g potatoes, 2% dextrose, 1.6% agar), and incubated at 25°C in darkness. Two isolates (Bq2 and Bq3) were subcultured using the single-spore method. On PDA, colonies were cottony, with whitish aerial mycelium and the daily growth rate was 4.25 to 5.50 mm/day at 25°C in darkness. On carnation leaf agar, macroconidia were fusiform with slightly curved apical cells and foot-shaped basal cells, three to five septate, measuring 47.5 to 80.3 × 3.6 to 5.6 µm (average 68.7 × 4.7 µm, n = 30). On spezieller nährstoffarmer agar, microconidia were produced in false heads on monophialides, mostly 0-septate, oval, obovoid, or reniform in shape, measuring 5.1 to 10.7 × 2.7 to 5.3 µm (average 8.5 × 3.3 µm, n = 30). Chlamydospores were 4.9 to 11.0 µm in diameter (average 6.8 µm, n = 30), round shaped, thick-walled, and produced individually or in pairs or in chains. For molecular identification, the ribosomal internal transcribed spacers (ITS), translation elongation factor 1α (EF-1α), 28S large subunit nrDNA (LSU), and calmodulin (CAM) genes were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), EF1H/EF2T (O'Donnell et al. 1998), LR0R/LR5 ( Vilgalys and Hester 1990; Vilgalys and Sun 1994), and CL1/CL2A (Geiser et al. 2021; Wang et al. 2011), respectively. The sequences were deposited in GenBank (OQ711943-OQ711944 for ITS, OQ722438- Q722439 for EF-1α, OQ722441-OQ722442 for CAM, and OR116152-OR116153 for LSU). A maximum-likelihood phylogenetic analysis based on multilocus sequences was conducted using MEGA7, which showed that the two isolates grouped into a clade with Neocosmospora mori (previously Fusarium solani species complex) supported by a high bootstrap value (85%), and hence, they were identified as N. mori based on morphological and molecular analyses (Brooks et al. 2022; Crous et al. 2021; Lombard et al. 2015; Zeng and Zhuang 2023). To complete Koch's postulates, three healthy 2-month-old seedlings grown in sterile peat mix were removed from pots and the roots were washed in sterile water. Each plant was inoculated by dipping wounded and unwounded roots in a spore suspension (1 × 107 conidia/ml) for 20 min, and then 10 mL of the spore suspension was poured over the roots of each seedling after transplanting. Three plants were treated with sterilized water as a control. The tested plants were then kept in a plastic box containing sterile water and incubated at 25°C in a 12 h/12 h light/dark cycle. The pathogenicity assay was repeated three times for each isolate. Root and stem blight was observed 10 days after inoculation, while the control plants were asymptomatic. Furthermore, fungi with morphological characteristics of N. mori were only reisolated from the symptomatic stems and sequences of LSU matched those of isolates Bq2 and Bq3. This pathogen has been reported previously causing stem blight on mulberry trees in Japan and South Korea (Sandoval-Denis et al. 2019), but to our knowledge, this is the first report of N. mori causing root rot and stem blight of mulberry in China. This report will facilitate the development of effective control strategies for the disease.

9.
Genes (Basel) ; 14(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37372462

RESUMEN

Mulberry leaves are excellent for health care, confirmed as a 'drug homologous food' by the Ministry of Health, China. The bitter taste of mulberry leaves is one of the main problems that hinders the development of the mulberry food industry. The bitter, unique taste of mulberry leaves is difficult to eliminate by post-processing. In this study, the bitter metabolites in mulberry leaves were identified as flavonoids, phenolic acids, alkaloids, coumarins and L-amino acids by a combined analysis of the metabolome and transcriptome of mulberry leaves. The analysis of the differential metabolites showed that the bitter metabolites were diverse and the sugar metabolites were down-regulated, indicating that the bitter taste of mulberry leaves was a comprehensive reflection of various bitter-related metabolites. Multi-omics analysis showed that the main metabolic pathway related to bitter taste in mulberry leaves was galactose metabolism, indicating that soluble sugar was one of the main factors of bitter taste difference in mulberry leaves. Bitter metabolites play a great role in the medicinal and functional food of mulberry leaves, but the saccharides in mulberry leaves have a great influence on the bitter taste of mulberry. Therefore, we propose to retain bitter metabolites with drug activity in mulberry leaves and increase the content of sugars to improve the bitter taste of mulberry leaves as strategies for mulberry leaf food processing and mulberry breeding for vegetable use.


Asunto(s)
Morus , Gusto , Morus/genética , Transcriptoma , Fitomejoramiento , Carbohidratos , Metaboloma , Azúcares
10.
Plants (Basel) ; 12(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37299045

RESUMEN

Mulberry is a valuable woody plant with significant economic importance. It can be propagated through two main methods: cutting and grafting. Waterlogging can have a major impact on mulberry growth and can significantly reduce production. In this study, we examined gene expression patterns and photosynthetic responses in three waterlogged mulberry cultivars propagated through cutting and grafting. Compared to the control group, waterlogging treatments reduced levels of chlorophyll, soluble protein, soluble sugars, proline, and malondialdehyde (MDA). Additionally, the treatments significantly decreased the activities of ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) in all three cultivars, except for superoxide dismutase (SOD). Waterlogging treatments also affected the rate of photosynthesis (Pn), stomatal conductance (Gs), and transpiration rate (Tr) in all three cultivars. However, no significant difference in physiological response was observed between the cutting and grafting groups. Gene expression patterns in the mulberry changed dramatically after waterlogging stress and varied between the two propagation methods. A total of 10,394 genes showed significant changes in expression levels, with the number of differentially expressed genes (DEGs) varying between comparison groups. GO and KEGG analysis revealed important DEGs, including photosynthesis-related genes that were significantly downregulated after waterlogging treatment. Notably, these genes were upregulated at day 10 in the cutting group compared to the grafting group. In particular, genes involved in carbon fixation were significantly upregulated in the cutting group. Finally, cutting propagation methods displayed better recovery capacity from waterlogging stress than grafting. This study provides valuable information for improving mulberry genetics in breeding programs.

11.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955752

RESUMEN

Photosynthesis is one of the most important factors in mulberry growth and production. To study the photosynthetic regulatory network of mulberry we sequenced the transcriptomes of two high-yielding (E1 and E2) and one low-yielding (H32) mulberry genotypes at two-time points (10:00 and 12:00). Re-annotation of the mulberry genome based on the transcriptome sequencing data identified 22,664 high-quality protein-coding genes with a BUSCO-assessed completeness of 93.4%. A total of 6587 differentially expressed genes (DEGs) were obtained in the transcriptome analysis. Functional annotation and enrichment revealed 142 out of 6587 genes involved in the photosynthetic pathway and chloroplast development. Moreover, 3 out of 142 genes were further examined using the VIGS technique; the leaves of MaCLA1- and MaTHIC-silenced plants were markedly yellowed or even white, and the leaves of MaPKP2-silenced plants showed a wrinkled appearance. The expression levels of the ensiled plants were reduced, and the levels of chlorophyll b and total chlorophyll were lower than those of the control plants. Co-expression analysis showed that MaCLA1 was co-expressed with CHUP1 and YSL3; MaTHIC was co-expressed with MaHSP70, MaFLN1, and MaEMB2794; MaPKP2 was mainly co-expressed with GH9B7, GH3.1, and EDA9. Protein interaction network prediction revealed that MaCLA1 was associated with RPE, TRA2, GPS1, and DXR proteins; MaTHIC was associated with TH1, PUR5, BIO2, and THI1; MaPKP2 was associated with ENOC, LOS2, and PGI1. This study offers a useful resource for further investigation of the molecular mechanisms involved in mulberry photosynthesis and preliminary insight into the regulatory network of photosynthesis.


Asunto(s)
Morus , Cloroplastos/genética , Cloroplastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Morus/metabolismo , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA-Seq , Transcriptoma
12.
Plant Dis ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787006

RESUMEN

Mulberry (Morus alba L.) has been grown worldwide as a crop for silkworm rearing for over five thousand years (Jiao et al. 2020). In July 2021, a leaf spot disease was observed on mulberry leaves in Wuhan city (114°33'E, 30°48'N), Hubei province, China, with approximately 40% of leaves (about 300 trees) affected. Early symptoms were light brown, with small lesions subsequently expanding to larger sometimes irregular dark brown or black spots surrounded by yellow-brown margins, with easily perforated necrotic lesions. Leaf tissues (5 mm×5 mm) were excised from the border between diseased and healthy tissues, surface sterilized with 75% ethanol solution for 30 s and 2.5% sodium hypochlorite for 2 min, washed thrice in sterile distilled water, and then placed on potato dextrose agar (PDA), and incubated at 25°C in darkness. Four isolates (C1, C9, CHS2, and CHS6) were subcultured using the single-spore method. On PDA, colonies were cottony, pale white from above, and white to grayish-green on the reverse side. Conidia were aseptate, hyaline, subcylindrical with broadly rounded ends, 8.4 to 18.3×4.1 to 7.7 µm (mean = 13.9×5.5 µm, n = 30). Appressoria were typically elliptic or irregular with a few lobes, dark brown, 5.9 to 9.6×4.2 to 8.1 µm (mean = 7.9 ×5.7 µm, n = 30). The morphological characteristics of the isolates matched the descriptions of Colletotrichum gloeosporioides species complex (Weir et al. 2012). The isolates were further identified by analysis of the ribosomal internal transcribed spacers (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), calmodulin (CAL), actin (ACT), chitin synthase (CHS-1), glutamine synthetase (GS), and ß-tubulin 2 (TUB2) genes, amplified respectively with ITS1/ITS4, GDF/GDR, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-345R, GSF1/GSR, and Bt2a/Bt2b (Glass and Donaldson 1995; Weir et al. 2012; White et al. 1990). The sequences were deposited in GenBank (ON492187-ON492214). Concatenated sequences of the seven genes in addition to Colletotrichum species sequences from GenBank were used to conduct a phylogenetic analysis using Maximum-Likelihood (ML) method in MEGA7. The four isolates were grouped into a clade with Colletotrichum aenigma supported by a high bootstrap value (89%), and hence, they were identified as C. aenigma based on the morphological and molecular analyses. To confirm Koch's postulates, wounded leaves of six healthy 2-month-old seedlings made by a sterile needle were inoculated with each isolate by spraying 10 ml of conidial suspensions (105 conidia/ml) on each plant, and the control plants were treated with sterile distilled water. All the treated plants were kept in a plastic box containing sterile water and incubated at 28°C in a 12 h/12 h light/dark cycle. The test was performed three times. After 7 days, typical anthracnose lesions appeared on all inoculated leaves, whereas control plants remained asymptotic. Furthermore, C. aenigma was only reisolated from the symptomatic leaves. Previous studies reported five Colletotrichum species (C. morifolium, C. fioriniae, C. brevisporum, C. karstii, and C. kahawae subsp. ciggaro) to cause this disease on mulberry in China (Tian, 1981; Xue et al. 2019). To our knowledge, this is the first report of C. aenigma causing anthracnose on mulberry in China. The finding will facilitate epidemiological studies and the development of effective control strategies for the disease.

13.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893150

RESUMEN

Amplicon sequencing is a powerful tool for analyzing the fungal composition inside plants, whereas its application for the identification of etiology for plant diseases remains undetermined. Here, we utilize this strategy to clarify the etiology responsible for tea leaf brown-black spot disease (LBSD), a noticeable disease infecting tea plants etiology that remains controversial. Based on the ITS-based amplicon sequencing analysis, Didymella species were identified as separate from Pestalotiopsis spp. and Cercospora sp., which are concluded as the etiological agents. This was further confirmed by the fungal isolation and their specific pathogenicity on diverse tea varieties. Based on the morphologies and phylogenetic analysis constructed with multi-loci (ITS, LSU, tub2, and rpb2), two novel Didymella species-tentatively named D. theae and D. theifolia as reference to their host plants-were proposed and characterized. Here, we present an integrated approach of ITS-based amplicon sequencing in combination with fungal isolation and fulfillment of Koch's postulates for etiological identification of tea plant disease, revealing new etiology for LBSD. This contributes useful information for further etiological identification of plant disease based on amplicon sequencing, as well as understanding, prevention, and management of this economically important disease.

14.
Plant Cell Physiol ; 63(5): 671-682, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35247053

RESUMEN

Identifying the early predictive biomarkers or compounds represents a pivotal task for guiding a targeted agricultural practice. Despite the various available tools, it remains challenging to define the ideal compound combination and thereby elaborate an effective predictive model fitting that. Hence, we employed a stepwise feature selection approach followed by a maximum relevance and minimum redundancy (MRMR) on the untargeted metabolism in four mulberry genotypes at different fruit developmental stages (FDSs). Thus, we revealed that 7 out of 226 differentially abundant metabolites (DAMs) explained up to 80% variance of anthocyanin based on linear regression model and stepwise feature selection approach accompanied by an MRMR across the genotypes over the FDSs. Among them, the phosphoenolpyruvate, d-mannose and shikimate show the top 3 attribution indexes to the accumulation of anthocyanin in the fruits of these genotypes across the four FDSs. The obtained results were further validated by assessing the regulatory genes expression levels and the targeted metabolism approach. Taken together, our findings provide valuable evidences on the fact that the anthocyanin biosynthesis is somehow involved in the coordination between the carbon metabolism and secondary metabolic pathway. Our report highlights as well the importance of using the feature selection approach for the predictive biomarker identification issued from the untargeted metabolomics data.


Asunto(s)
Antocianinas , Morus , Biomarcadores/metabolismo , Frutas/genética , Frutas/metabolismo , Metabolómica/métodos , Morus/genética , Morus/metabolismo
15.
Stud Hist Philos Sci ; 88: 164-171, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34198023

RESUMEN

Hempel seems to hold the following three views: (H1) Understanding is pragmatic/relativistic: Whether one understands why X happened in terms of Explanation E depends on one's beliefs and cognitive abilities; (H2) Whether a scientific explanation is good, just like whether a mathematical proof is good, is a nonpragmatic and objective issue independent of the beliefs or cognitive abilities of individuals; (H3) The goal of scientific explanation is understanding: A good scientific explanation is the one that provides understanding. Apparently, H1, H2, and H3 cannot be all true. Some philosophers think that Hempel is inconsistent, while some others claim that Hempel does not actually hold H3. I argue that Hempel does hold H3 and that he can consistently hold all of H1, H2, and H3 if he endorses what I call the "understanding argument." I also show how attributing the understanding argument to Hempel can make more sense of his D-N model and his philosophical analysis of the pragmatic aspects of scientific explanation.


Asunto(s)
Cognición , Humanos , Masculino
16.
New Phytol ; 229(5): 2676-2692, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33135782

RESUMEN

Auxin regulates almost every aspect of plant growth and development and is perceived by the TIR1/AFB auxin co-receptor proteins differentially acting in concert with specific Aux/IAA transcriptional repressors. Little is known about the diverse functions of TIR1/AFB family members in species other than Arabidopsis. We created targeted OsTIR1 and OsAFB2-5 mutations in rice using CRISPR/Cas9 genome editing, and functionally characterized the roles of these five members in plant growth and development and auxinic herbicide resistance. Our results demonstrated that functions of OsTIR1/AFB family members are partially redundant in grain yield, tillering, plant height, root system and germination. Ostir1, Osafb2 and Osafb4 mutants exhibited more severe phenotypes than Osafb3 and Osafb5. The Ostir1Osafb2 double mutant displays extremely severe defects in plant development. All five OsTIR1/AFB members interacted with OsIAA1 and OsIAA11 proteins in vivo. Root elongation assay showed that each Ostir1/afb2-5 mutant was resistant to 2,4-dichlorophenoxyacetic acid (2,4-D) treatment. Notably, only the Osafb4 mutants were strongly resistant to the herbicide picloram, suggesting that OsAFB4 is a unique auxin receptor in rice. Our findings demonstrate similarities and specificities of auxin receptor TIR1/AFB proteins in rice, and could offer the opportunity to modify effective herbicide-resistant alleles in agronomically important crops.


Asunto(s)
Proteínas F-Box , Resistencia a los Herbicidas , Oryza , Proteínas de Plantas/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Ácidos Indolacéticos , Oryza/genética , Oryza/crecimiento & desarrollo
17.
Arch Microbiol ; 203(3): 1107-1121, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33165874

RESUMEN

The contribution of crops and soil microbial community structure and functional diversity in soil-borne diseases control mulberry plant production is still inadequately understood. In this work, a comparative study was undertaken on the microbial abundance, community structure, and functional diversity in the soil rhizosphere between the resistant (Kangqing 10) and the susceptible (Guisang 12) mulberry genotypes. The study deployed the use of dilution plate method, micro-ecology technology, and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques. The study aimed at developing better crop management methods for mulberry cultivation as well as preventing and controlling the occurrence and impacts of bacterial wilt on mulberry productivity. The results indicated that the soil rhizosphere microorganisms were more abundant in the normal resistant mulberry genotype than in the normal susceptible mulberry genotype. Carbon source utilization was better in the normal susceptible mulberry genotype. These properties were lower in the sickly resistant mulberry genotype than in the susceptible sickly mulberry genotype. Through the PCR-DGGE, it was shown that the bacterial and fungal community structures of the resistant genotypes were more stable than those of the susceptible genotypes. Through correlation regression analysis, it was shown that the mulberry bacterial wilt significantly contributes to the loss of soil nutrients, particularly organic matter and nitrogen, a possible cause to disrupted balance between the soil microbial community and the loss of soil organic matter. Resistant genotype plants displayed more resistance to bacterial wilt. Therefore, this study recommends the need to promote the cultivation of resistant genotype mulberry for increased yield.


Asunto(s)
Resistencia a la Enfermedad/genética , Morus/genética , Morus/microbiología , Rizosfera , Microbiología del Suelo , Bacterias/genética , Hongos/fisiología , Genotipo , Microbiota/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Suelo/química
18.
J Integr Plant Biol ; 62(12): 1839-1852, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32644250

RESUMEN

The juvenile-to-adult transition in plants involves changes in vegetative growth and plant architecture; the timing of this transition has important implications for agriculture. The microRNA miR156 regulates this transition and shoot maturation in plants. In Arabidopsis thaliana, deposition of histone H3 trimethylation on lysine 27 (H3K27me3, a repressive mark) at the MIR156A/C loci is regulated by Polycomb Repressive Complex 1 (PRC1) or PRC2, depending on the developmental stage. The levels of miR156 progressively decline during shoot maturation. The amount of H3K27me3 at MIR156A/C loci affects miR156 levels; however, whether this epigenetic regulation is conserved remains unclear. Here, we found that in rice (Oryza sativa), the putative PRC1 subunit LIKE HETEROCHROMATIN PROTEIN 1 (OsLHP1), with the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module, affects developmental phase transitions. Loss of OsLHP1 function results in ectopic expression of MIR156B/C/I/E, phenocopy of miR156 overexpression, and reduced H3k27me3 levels at MIR156B/C/I/E. This indicates that OsLHP1 has functionally diverged from Arabidopsis LHP1. Genetic and transcriptome analyses of wild-type, miR156b/c-overexpression, and Oslhp1-2 mutant plants suggest that OsLHP1 acts upstream of miR156 and SPL during the juvenile-to-adult transition. Therefore, modifying the OsLHP1-miR156-SPL pathway may enable alteration of the vegetative period and plant architecture.


Asunto(s)
Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
19.
Arch Microbiol ; 202(7): 1915-1927, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32451591

RESUMEN

The objective of this study was to investigate how straw-incorporating practices affect bacterial communities and carbon source utilization capacity under a rice-wheat rotational farming practice in central China. To clarify the effect of long-term straw incorporation in microbial abundance and carbon metabolism, a long-term field experiment was initiated in May 2005 (rice-planting season). Soil bacterial communities were revealed by high-throughput sequencing technology. After ten cycles of annual rice-wheat rotation (2005-2015), 2 M (straw incorporation) and 2 M + NPK (high straw incorporation + chemical fertilizer) treatments had significantly more bacterial phyla compared with CK (non-fertilization) and NPK (chemical fertilizer) treatments. Taxonomic analysis revealed that 2 M and NPK + 2 M treatments had a significantly greater abundance of microbial communities, especially the Gemmatimonadetes, Acidobacteria, Firmicutes, and Actinobacteria. In the NPK versus 2 M, 2 M treatment had a significantly greater abundance of Rozellomycota (P < 0.05). In the NPK + 2 M versus NPK, NPK + 2 M treatment also had significantly greater abundance of Ascomycota (P < 0.05). Principal component analysis (PCA) analysis showed that 2 M treatment was separate from other treatments. Using biolog-ECO method, the metabolic diversity and functional characteristics of microbial communities were used to indicate the ability of microorganisms to utilize carbon source. The carbon utilization ability of soil microorganisms in 2 M + NPK treatment was significantly higher than that of CK treatment (P < 0.05). The utilization ability of carboxylic acids, polymers, and other mixtures of carbon sources in 2 M treatment was higher than those of other treatments. These findings suggest that long-term straw incorporation affects the abundance and carbon utilization ability of soil microorganisms within 0-20 cm soil depths, among which, Gemmatimonadetes, Firmicutes, and Actinobacteria may play crucial roles in bacterial communities and carbon source utilization capacity.


Asunto(s)
Agricultura , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Oryza , Microbiología del Suelo , Triticum , Bacterias/clasificación , Bacterias/metabolismo , Carbono/metabolismo , China , Fertilizantes , Suelo/química
20.
Mol Plant ; 13(6): 923-932, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32222483

RESUMEN

Plant architecture is a complex agronomic trait and a major factor of crop yield, which is affected by several important hormones. Strigolactones (SLs) are identified as a new class hormoneinhibiting branching in many plant species and have been shown to be involved in various developmental processes. Genetical and chemical modulation of the SL pathway is recognized as a promising approach to modify plant architecture. However, whether and how the genes involved in the SL pathway could be utilized in breeding still remain elusive. Here, we demonstrate that a partial loss-of-function allele of the SL biosynthesis gene, HIGH TILLERING AND DWARF 1/DWARF17 (HTD1/D17), which encodes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), increases tiller number and improves grain yield in rice. We found that the HTD1 gene had been widely utilized and co-selected with Semidwarf 1 (SD1), both contributing to the improvement of plant architecture in modern rice varieties since the Green Revolution in the 1960s. Understanding how phytohormone pathway genes regulate plant architecture and how they have been utilized and selected in breeding will lay the foundation for developing the rational approaches toward improving crop yield.


Asunto(s)
Vías Biosintéticas/genética , Genes de Plantas , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Oryza/genética , Alelos , Mutación con Pérdida de Función/genética , Oryza/anatomía & histología , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...