Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Dermatol Sci ; 113(3): 93-102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383230

RESUMEN

BACKGROUND: Aberrant keratinocytes differentiation has been demonstrated to be associated with a number of skin diseases. The roles of lncRNAs in keratinocytes differentiation remain to be largely unknown. OBJECTIVE: Here we aim to investigate the role of lnc-DC in regulating epidermal keratinocytes differentiation. METHODS: Expression of lnc-DC in the skin was queried in AnnoLnc and verified by FISH. The lncRNA expression profiles during keratinocytes differentiation were reanalyzed and verified by qPCR and FISH. Gene knock-down and over-expression were used to explore the role of lnc-DC in keratinocytes differentiation. The downstream target of lnc-DC was screened by whole transcriptome sequencing. CUT&RUN assay and siRNAs transfection was used to reveal the regulatory effect of GRHL3 on lnc-DC. The mechanism of lnc-DC regulating ZNF750 was revealed by RIP assay and RNA stability assay. RESULTS: Lnc-DC was biasedly expressed in skin and up-regulated during epidermal keratinocytes differentiation. Knockdown lnc-DC repressed epidermal keratinocytes differentiation while over-express lnc-DC showed the opposite effect. GRHL3, a well-known transcription factor regulating keratinocytes differentiation, could bind to the promoter of lnc-DC and regulate its expression. By whole transcriptome sequencing, we identified that ZNF750 was a downstream target of lnc-DC during keratinocytes differentiation. Mechanistically, lnc-DC interacted with RNA binding protein IGF2BP2 to stabilize ZNF750 mRNA and up- regulated its downstream targets TINCR and KLF4. CONCLUSION: Our study revealed the novel role of GRHL3/lnc-DC/ZNF750 axis in regulating epidermal keratinocytes differentiation, which may provide new therapeutic targets of aberrant keratinocytes differentiation related skin diseases.


Asunto(s)
ARN Largo no Codificante , Enfermedades de la Piel , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Queratinocitos/metabolismo , Piel/metabolismo , Enfermedades de la Piel/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/metabolismo
2.
Int J Biol Sci ; 18(11): 4388-4399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864974

RESUMEN

Chronic non-healing wounds fail to progress beyond the inflammatory phase, characterized by a disorder of inflammation resolution. PD-1/PD-L1, a major co-inhibitory checkpoint signaling, plays critical roles in tumor immune surveillance and the occurrence of inflammatory or autoimmune diseases, but its roles in wound healing remains unclear. Here, we described a novel function of PD-L1 in fibroblast-like cells as a positive regulator of wound healing. PD-L1 dynamically expressed on the fibroblast-like cells in the granulation tissue during wound healing to form a wound immunosuppressive microenvironment, modulate macrophages polarization from M1-type to M2-type, and initiates resolution of inflammation, finally accelerate wound healing. Loss of PD-L1 delayed wound healing, especially in mice with LPS-induced severe inflammation. Furthermore, the mainly regulatory mechanism is that combination of FGF-2 and TGF-ß1 promotes PD-L1 translation in fibroblasts through enhancing the eIF4E availability regulated by both PI3K-AKT-mTOR-4EBP1 and p38-ERK-MNK signaling pathways. Our results reveal the positive role of PD-L1 in wound healing, and provide a new strategy for the treatment of chronic wounds.


Asunto(s)
Antígeno B7-H1 , Fosfatidilinositol 3-Quinasas , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Cicatrización de Heridas/genética
3.
Clin Transl Med ; 12(3): e777, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35343085

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most predominant form of liver diseases worldwide. Recent evidence shows that myeloid differentiation factor 2 (MD2), a protein in innate immunity and inflammation, regulates liver injury in models of NAFLD. Here, we investigated a new mechanism by which MD2 participates in the pathogenesis of experimental NAFLD. METHODS: Wild-type, Md2-/- and bone marrow reconstitution mice fed with high-fat diet (HFD) were used to identify the role of hepatocyte MD2 in NAFLD. Transcriptomic RNA-seq and pathway enrich analysis were performed to explore the potential mechanisms of MD2. In vitro, primary hepatocytes and macrophages were cultured for mechanistic studies. RESULTS: Transcriptome analysis and bone marrow reconstitution studies showed that hepatocyte MD2 may participate in regulating lipid metabolism in models with NAFLD. We then discovered that Md2 deficiency in mice prevents HFD-mediated suppression of AMP-activated protein kinase (AMPK). This preservation of AMPK in Md2-deficient mice was associated with normalized sterol regulatory element binding protein 1 (SREBP1) transcriptional program and a lack of lipid accumulation in both hepatocytes and liver. We then showed that hepatocyte MD2 links HFD to AMPK/SREBP1 through TANK binding kinase 1 (TBK1). In addition, MD2-increased inflammatory factor from macrophages induces hepatic TBK1 activation and AMPK suppression. CONCLUSION: Hepatocyte MD2 plays a pathogenic role in NAFLD through TBK1-AMPK/SREBP1 and lipid metabolism pathway. These studies provide new insight into a non-inflammatory function of MD2 and evidence for the important role of MD2 in NALFD.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Lípidos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Serina-Treonina Quinasas/genética
4.
J Exp Clin Cancer Res ; 39(1): 270, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267897

RESUMEN

BACKGROUND: Emerging evidence suggests that epithelial mesenchymal transition (EMT) and epigenetic mechanisms promote metastasis. Histone deacetylases (HDACs) and noncoding RNAs (ncRNAs) are important epigenetic regulators. Here, we elucidated a novel role of histone deacetylase 2 (HDAC2) in regulating EMT and CRC metastasis via ncRNA. METHODS: The expression of HDACs in CRC was analyzed using the public databases and matched primary and metastatic tissues, and CRC cells with different metastatic potentials (DLD1, HCT116, SW480 and SW620). Microarray analysis was used to identify differential genes in parental and HDAC2 knockout CRC cells. EMT and histone modifications were determined using western blot and immunofluorescence. Migration ability was assessed by transwell assay, and metastasis was assessed in vivo using a tail vain injection. Gene expression and regulation was assessed by RT-PCR, chromatin immunoprecipitation and reporter assays. Protein interaction was assessed by immunoprecipitation. Specific siRNAs targeting H19, SP1 and MMP14 were used to validate their role in HDAC2 loss induced EMT and metastasis. RESULTS: Reduced HDAC2 expression was associated with poor prognosis in CRC patients and found in CRC metastasis. HDAC2 deletion or knockdown induced EMT and metastasis by upregulating the long noncoding RNA H19 (LncRNA H19). HDAC2 inhibited LncRNA H19 expression by histone H3K27 deacetylation in its promoter via binding with SP1. LncRNA H19 functioned as a miR-22-3P sponge to increase the expression of MMP14. HDAC2 loss strongly promoted CRC lung metastasis, which was suppressed LncRNA H19 knockdown. CONCLUSION: Our study supports HDAC2 as a CRC metastasis suppressor through the inhibition of EMT and the expression of H19 and MMP14.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Histona Desacetilasa 2/metabolismo , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Neoplasias Colorrectales/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Histona Desacetilasa 2/genética , Humanos , Metástasis de la Neoplasia , ARN Largo no Codificante/genética
5.
Diabetologia ; 60(9): 1822-1833, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28577176

RESUMEN

AIMS/HYPOTHESIS: Regeneration and repair mediated by mesenchymal stem cells (MSCs) are key self-protection mechanisms against diabetic complications, a reflection of diabetes-related cell/tissue damage and dysfunction. MSC abnormalities have been reported during the progression of diabetic complications, but little is known about whether a deficiency in these cells plays a role in the pathogenesis of this disease. In addition to MSC resident sites, peripheral circulation is a major source of MSCs that participate in the regeneration and repair of damaged tissue. Therefore, we investigated whether there is a deficiency of circulating MSC-like cells in people with diabetes and explored the underlying mechanisms. METHODS: The abundance of MSC-like cells in peripheral blood was evaluated by FACS. Selected diabetic and non-diabetic serum (DS and NDS, respectively) samples were used to mimic diabetic and non-diabetic microenvironments, respectively. The proliferation and survival of MSCs under different serum conditions were analysed using several detection methods. The survival of MSCs in diabetic microenvironments was also investigated in vivo using leptin receptor mutant (Lepr db/db ) mice. RESULTS: Our data showed a significant decrease in the abundance of circulating MSC-like cells, which was correlated with complications in individuals with type 2 diabetes. DS strongly impaired the proliferation and survival of culture-expanded MSCs through the complement system but not through exposure to high glucose levels. DS-induced MSC apoptosis was mediated, at least in part, by the complement C5a-dependent upregulation of Fas-associated protein with death domain (FADD) and the Bcl-2-associated X protein (BAX)/B cell lymphoma 2 (Bcl-2) ratio, which was significantly inhibited by neutralising C5a or by the pharmacological or genetic inhibition of the C5a receptor (C5aR) on MSCs. Moreover, blockade of the C5a/C5aR pathway significantly inhibited the apoptosis of transplanted MSCs in Lepr db/db recipient mice. CONCLUSIONS/INTERPRETATION: C5a-dependent apoptotic death is probably involved in MSC deficiency and in the progression of complications in individuals with type 2 diabetes. Therefore, anticomplement therapy may be a novel intervention for diabetic complications.


Asunto(s)
Complemento C5a/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Complemento C5a/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Masculino , Ratones , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...