Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 98(12)2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36367530

RESUMEN

Biochar is well known as an effective means for soil amendment, and modification on biochar with different methods could improve the benefits for environmental remediation. In this study, two modified biochars were generated with nitric acid (NBC) and hydrogen peroxide (OBC) pretreatment, and a control biochar was produced after washing with deionized water (WBC). The dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in rice paddy soil amended with different biochars or without adding biochar (CK) were studied during 70 days of anaerobic incubation. Compared to CK treatment, the accumulation of SCFAs was largely inhibited by the amendment of biochars. Besides, OBC and WBC increased the accumulation of Fe(II) at the initial stage of incubation. Via 16S rRNA gene sequencing, modified biochars caused significant response of bacterial community in comparison to WBC at Day 0-1, and three biochars favored bacterial α-diversity in the paddy soil at the end of the incubation. Interestingly, positive and negative correlations between NBC and several bacteria taxa (e.g. Geobacter, Fonticella and Clostridium) were observed. The study revealed that modified biochars had significant effects on the shifts of SCFAs, Fe(III) reduction and bacterial diversity, which provides fundamental information for future application of modified biochars in rice cropping ecosystem.


Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Ecosistema , ARN Ribosómico 16S/genética , Compuestos Férricos , Carbón Orgánico , Bacterias/genética , Ácidos Grasos Volátiles , Hierro
2.
Chemosphere ; 304: 135288, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691388

RESUMEN

Modified biochars have been widely applied in ameliorating environmental problems. However, the effect of modified biochar on suppressing CH4 emission in rice paddy soil is not fully understood. In order to further study CH4 regulation in paddy soil via the modification of biochar and explore its influence on key archaeal communities, two modified biochars were generated with the pre-treatment of nitric acid (NBC) and hydrogen peroxide (OBC), respectively, and a control group was setup with water-washed biochar (WBC). Results showed that NBC significantly suppressed CH4 emission, followed by OBC and WBC, while NBC promoted the CO2 emission. Besides, the addition of biochars inhibited the accumulation of acetate and H2 in rice paddy soil, especially in the NBC treatment. 16S rRNA gene sequencing revealed that biochars amendment increased α-diversity of archaeal community and the modified biochars could mitigate the loss of α-diversity in the early stage of anaerobic incubation. Additionally, NBC amendment largely declined the relative abundance of methanogens (especially Methanosarcina) in archaeal community, while OBC and NBC promoted the relative abundance of Candidatus_Methanoperedens. Via Spearman's correlation coefficient analysis, NBC had positive correlations with Methanosaeta, and OBC showed a negative correlation with Methanocella. Overall, this study provided a practical way to regulate the CH4 emission and associated methanogenic archaea via the amendment of different modified biochars in rice paddy soil.


Asunto(s)
Oryza , Suelo , Archaea/genética , Carbón Orgánico , Metano , Oryza/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
3.
Chemosphere ; 283: 130983, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34153910

RESUMEN

Biochar was proved as an electron shuttle to facilitate extracellular electron transfer (EET) of electrochemically active bacteria (EAB); however, its underlying mechanism was not fully understood. In this study, we aimed to further explore how the regulation of surface functional groups of biochar would affect the microbial iron reduction process of Geobacter sulfurreducens as a typical EAB. Two modified biochars were achieved after HNO3 (NBC) and NaBH4 (RBC) pretreatments, and a control biochar was produced after deionized water (WBC) washing. Results showed that WBC and RBC significantly accelerated microbial iron reduction of G. sulfurreducens PCA, while had no effect in the final Fe (II) minerals (e.g., vivianite and green rust (CO32-)). Besides, Brunauer-Emmett-Teller (BET) surface area, electron spin resonance (ESR) and electrochemical measurements showed that larger surface area, lower redox potential, and more redox-active groups (e.g., aromatic structures and quinone/hydroquinone moieties) in RBC explained its better electron transfer performance comparing to WBC. Interestingly, NBC completely suppressed the Fe (III) reduction process, mainly due to the production of reactive oxygen species which inhibited the growth of G. sulfurreducens PCA. Overall, this work paves a feasible way to regulate the surface functional groups for biochar, and comprehensively revealed its effect on EET process of microorganisms.


Asunto(s)
Geobacter , Carbón Orgánico , Transporte de Electrón , Compuestos Férricos , Hierro , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...