Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
China CDC Wkly ; 6(23): 553-557, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38933663

RESUMEN

Introduction: Traditional methods for determining radiation dose in nuclear medicine include the Monte Carlo method, the discrete ordinate method, and the point kernel integration method. This study presents a new mathematical model for predicting the radiation dose rate in the vicinity of nuclear medicine patients. Methods: A new algorithm was created by combining the physical model of "cylinder superposition" of the human body with integral analysis to assess the radiation dose rate in the vicinity of nuclear medicine patients. Results: The model accurately predicted radiation dose rates within distances of 0.1-3.0 m, with a deviation of less than 11% compared to observed rates. The model demonstrated greater accuracy at shorter distances from the radiation source, with a deviation of only 1.55% from observed values at 0.1 m. Discussion: The model proposed in this study effectively represents the spatial and temporal distribution of the radiation field around nuclear medicine patients and demonstrates good agreement with actual measurements. This model has the potential to serve as a radiation dose rate alert system in hospital environments.

2.
Sci Rep ; 14(1): 2775, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307987

RESUMEN

We explored the joint effects of different metabolic obesity phenotypes on all-cause and disease-specific mortality risk among the American population. Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. Mortality outcome data were from mortality files linked to National Death Index record and follow-up information was up to December 31, 2019. 50,013 participants were finally included. Four metabolic obesity phenotypes were defined based on obesity and metabolic status: metabolically healthy obese (MHO), metabolically unhealthy obese (MUO), metabolically healthy non-obese (MHNO), and metabolically unhealthy non-obese (MUNO). Population-weighted Cox proportional hazards models were used to explore the all-cause and disease-specific mortality risk of metabolic obesity phenotypes. The all-cause mortality risk of MUO and MUNO was significantly higher than MHNO. MUNO was associated with a significantly increased risk of death from heart disease (HR: 1.40, 95% CI 1.16-1.70), hypertension (HR: 1.68, 95% CI 1.34-2.12), diabetes (HR: 2.29, 95% CI 1.67-3.15), and malignant neoplasms (HR:1.29, 95% CI 1.09-1.53). Metabolic unhealth significantly increased the risk of all-cause mortality, regardless of obesity status. Among individuals with metabolic unhealthy status, obesity significantly reduced the risk of all-cause mortality (HR: 0.91, 95% CI 0.85-0.98). Our study highlights the importance of identifying and characterizing metabolic obesity phenotypes in obese and metabolically abnormal patients, as well as healthy adults. Comprehensive evaluation of obesity and metabolic status is necessary to adopt appropriate interventions and treatment measures and maximize patient benefit.


Asunto(s)
Síndrome Metabólico , Obesidad , Adulto , Humanos , Estados Unidos/epidemiología , Factores de Riesgo , Encuestas Nutricionales , Índice de Masa Corporal , Estudios Longitudinales , Obesidad/complicaciones , Síndrome Metabólico/epidemiología , Fenotipo
3.
China CDC Wkly ; 6(2): 36-39, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38250698

RESUMEN

What is already known about this topic?: The impact of air temperature on varicella has been studied, but there is limited research exploring its effect on varicella by gender and age group. What is added by this report?: We conducted a time series analysis to examine the differential effects of air temperature on varicella infection across different demographic groups. Our findings indicate that lower temperatures have a more pronounced influence on varicella incidence among males and children compared to females and adults. What are the implications for public health practice?: These findings can assist in identifying populations that are vulnerable to temperature-related varicella and in guiding the implementation of effective measures for varicella control.

4.
China CDC Wkly ; 5(31): 698-702, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37593138

RESUMEN

Introduction: Varicella, a prevalent respiratory infection among children, has become an escalating public health issue in China. The potential to considerably mitigate and control these outbreaks lies in surveillance-based early warning systems. This research employed an autoregressive integrated moving average (ARIMA) model with the objective of predicting future varicella outbreaks in the country. Methods: An ARIMA model was developed and fine-tuned using historical data on the monthly instances of varicella outbreaks reported in China from 2005 to 2018. To determine statistically significant models, parameter and Ljung-Box tests were employed. The coefficients of determination (R2) and the normalized Bayesian Information Criterion (BIC) were compared to selecting an optimal model. This chosen model was subsequently utilized to forecast varicella outbreak cases for the year 2019. Results: Four models passed parameter (all P<0.05) and Ljung-Box tests (all P>0.05). ARIMA (1, 1, 1)×(0, 1, 1)12 was determined to be the optimal model based on its coefficient of determination R2 (0.271) and standardized BIC (14.970). Fitted values made by the ARIMA (1, 1, 1)×(0, 1, 1)12 model closely followed the values observed in 2019, the average relative error between the actual value and the predicted value is 15.2%. Conclusion: The ARIMA model can be employed to predict impending trends in varicella outbreaks. This serves to offer a scientific benchmark for strategies concerning varicella prevention and control.

5.
New Phytol ; 238(5): 1849-1864, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808625

RESUMEN

Forest fungal communities are shaped by the interactions between host tree root systems and the associated soil conditions. We investigated how the soil environment, root morphological traits, and root chemistry influence root-inhabiting fungal communities in three tropical forest sites of varying successional status in Xishuangbanna, China. For 150 trees of 66 species, we measured root morphology and tissue chemistry. Tree species identity was confirmed by sequencing rbcL, and root-associated fungal (RAF) communities were determined using high-throughput ITS2 sequencing. Using distance-based redundancy analysis and hierarchical variation partitioning, we quantified the relative importance of two soil variables (site average total phosphorus and available phosphorus), four root traits (dry matter content, tissue density, specific tip abundance, and forks), and three root tissue elemental concentrations (nitrogen, calcium, and manganese) on RAF community dissimilarity. The root and soil environment collectively explained 23% of RAF compositional variation. Soil phosphorus explained 76% of that variation. Twenty fungal taxa differentiated RAF communities among the three sites. Soil phosphorus most strongly affects RAF assemblages in this tropical forest. Variation in root calcium and manganese concentrations and root morphology among tree hosts, principally an architectural trade-off between dense, highly branched vs less-dense, herringbone-type root systems, are important secondary determinants.


Asunto(s)
Micobioma , Suelo , Calcio , Bosques , Manganeso , Fósforo , Suelo/química , Microbiología del Suelo , Árboles/microbiología
6.
China CDC Wkly ; 5(52): 1161-1166, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38164468

RESUMEN

Introduction: Varicella outbreaks significantly disrupt schools and other child-centered institutions. This study aimed to identify patterns and epidemiological features of varicella outbreaks in China from 2006 to 2022. Methods: Data were extracted from outbreak reports submitted to the Public Health Emergency Reporting Management Information System within the specified timeframe. Analytical methods included Spearman correlation tests and the Mann-Kendall trend tests, conducted using R software to analyze and summarize reported data. Additionally, statistical analyses of trends and epidemiological characteristics were performed using SPSS software. Results: Between 2006 and 2022, a total of 11,990 varicella outbreaks were reported in China, resulting in 354,082 cases. The attack rates showed a decreasing trend over the years (Z=-4.49, P<0.05). These outbreaks occurred in two peaks annually. The eastern region accounted for the highest number of outbreaks (31.53%), followed by the southwestern (24.22%) and southern (17.93%) regions. Varicella outbreaks were most common in elementary schools. Most of the outbreaks (60.43%) were classified as Grade IV (general) severity, with 86.41% of the outbreaks having 10-49 cases. The median and inter-quartile ranges (IQR) of the duration of outbreaks, response time, and case counts were 21 (10, 39) days, 4 (0, 12) days, and 23 (16, 35) cases, respectively. These variables showed a positive correlation (P<0.001). Conclusions: Varicella outbreaks exhibited fluctuating trends, initially decreasing until 2012, followed by an increase, reaching the highest peak in 2018-2019. Continual monitoring of varicella epidemiology is necessary to assess the burden of the disease and formulate evidence-based strategies and policies for its prevention and control.

7.
Langmuir ; 38(48): 14686-14694, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36437733

RESUMEN

The selective detection of mannose is significant for tumor early diagnosis. However, current methods for detecting mannose are expensive and time-consuming, limiting their application. In this paper, we have obtained a 25-layer positively charged micellar/LDHs nanocomposite film system by electrostatic layer-by-layer assembly with reference to the unique properties of homogeneous charge ion attraction and charge overcompensation in biomolecules: hexadecyl trimethylammonium bromide (CTAB) was used to coat neutral molecules of fluorescein (FLU) to form (FLU@CTAB) cationic micelles, which were electrostatically assembled with laminate positively charged layered double hydroxides (LDHs) nanosheets to form (FLU@CTAB/LDHs)n ultrathin films (UTFs) by the layer-by-layer electrostatic assembly, where the mediating role of the Br- counteranion had a profound effect on the success of the assembly. Moreover, compared to pure FLU solution, the fluorescence intensity and the lifetime of (FLU@CTAB/LDHs)20 UTFs were enhanced by 1.6 and 2 times, respectively. (FLU@CTAB/LDHs)20 UTFs exhibited selective detection for d-mannose with a detection limit of 0.05 mg·mL-1. Therefore, the (FLU@CTAB/LDHs)n UTFs can be a novel biosensor. Compared to conventional powder sensors, (FLU@CTAB/LDHs)n thin-film fluorescent sensors are more promising for device implementation. Moreover, the design strategy of positively charged micellar/LDHs nanocomposite systems breaks the current limitation that LDHs can only be assembled with anions or neutral molecules and extends the scope of counterion-mediated host-guest to the nanosheet-micellar system.


Asunto(s)
Manosa , Micelas , Biónica , Cetrimonio , Hidróxidos
8.
China CDC Wkly ; 4(29): 631-634, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35919826

RESUMEN

What is already known about this topic?: Herpes zoster (shingles) is a common skin condition in older adults, which usually presents as a painful rash with blisters. Vaccination is the most effective method to prevent shingles. However, there is not sufficient population-based epidemiological data in China to optimize the timing of zoster vaccination. What is added by this report?: Clustering analyses of population-wide epidemiological data from the Healthcare Big Data Platform in Yichang, China showed that the average annual zoster incidence is the highest among people 55 years or older, at 10 cases per thousand persons per year, making this age group the optimal target population for vaccination. Incidence was lower but increased with age among younger adults, 28-54 years old. What are the implications for public health practice?: With limited vaccination resources, zoster vaccinations should be targeted at adults 55 years or older who are at the greatest risk for shingles. Research should be conducted to understand the risk of shingles among young and middle-aged adults and identify triggers of shingles: potentially leading to preventive measures.

9.
J Oncol ; 2022: 4202439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847369

RESUMEN

Osteosarcoma is a kind of bone tumor with an extremely high malignant degree and often occurs in adolescents. Mesenchymal stem cells are believed to play an important role in the microenvironment of osteosarcoma, but whether they promote or inhibit the development of osteosarcoma is controversial. In this study, the coexpression of mesenchymal stem cells (MSCs) with osteosarcoma cell MG63 was used to explore the effect of MSCs on MG63. We found that co-culture of MSCs with MG63 did not affect the proliferation, invasion, and migration of MG63 cells, nor did it significantly affect the epithelial- and glial-mesenchymal transformation of MG63 cells. Therefore, in this study, we obtained a new concept that MSCs neither promote nor inhibit the occurrence and development of osteosarcoma.

10.
Fundam Res ; 2(5): 748-756, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38933123

RESUMEN

Inefficient flotation of bastnaesite remains a challenge in the production of rare earth elements. This study aimed to investigate the dissolution and adsorption behaviour of species that are commonly released into bastnaesite flotation pulp from Ca/Ba-bearing gangue minerals. The influence and corresponding mechanisms on the bastnaesite mineral surface and collectors, namely sodium oleate (NaOL), were evaluated experimentally based on micro-flotation, zeta potentials, in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-Ray photoelectron spectroscopy (XPS) analyses. The flotation recovery of bastnaesite significantly decreased from ∼95% to ∼25%, ∼15%, ∼80%, ∼25% when exposed to calcite, fluorite, barite, and mixed dissolved species, respectively. The zeta potential of bastnaesite was pH sensitive, indicating that H+ and OH- determine the surface potential of bastnaesite. Solution chemistry analyses revealed that the presence of the dissolved species differed at various pH values. In situ ATR-FTIR demonstrated the different effects of the dissolved species from calcite, fluorite, and barite on collector adsorption. The former two dissolved species mainly depressed the chemisorption of the NaOL monomers (RCOO‒), whereas calcite also affected the physical adsorption of the oleic acid molecular dimer (RCOOH·RCOO‒). Moreover, the barite dissolved species only affected the physical adsorption of the NaOL species. The results of XPS analysis revealed that dissolved species from these three gangues could pre-adsorbed onto bastnaesite and affected the interaction with the collector. Density functional theory calculations were employed to provide further theoretical insights into the interactions between the dissolved species from calcite, fluorite, and barite and NaOL.

11.
China CDC Wkly ; 3(3): 46-49, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34594954

RESUMEN

WHAT IS ALREADY KNOWN ON THIS TOPIC?: The incidence of diabetes is on the rise in the world, and it is increasingly affecting young people. The American Diabetes Association (ADA) has published the 2020 Diabetes Medical Standard, but there is no blood glucose standard for teenagers by age and sex. WHAT IS ADDED BY THIS REPORT?: In this study, quantile regression was used to analyze the data of National Health and Nutrition Examination Survey (NHANES) and found that blood glucose varied significantly based on demographics. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: This study provides reference for formulating the normal ranges of adolescent blood glucose and helping to screen out high-risk groups at an early stage for key interventions. The quantile regression method can give a set of curves, which could better describe the situation.

12.
Waste Manag ; 136: 1-10, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34627101

RESUMEN

The resource exhaustion and environmental assessment driven by sustainable development make recycle of spent LIBs urgent to be achieved. However, the conventional recycling processes are quite complicated in terms of the tedious steps and secondary contamination. In this paper, hydrosoluble naphthalenedisulfonic acid is firstly proposed to selectively extract valuable metals (Co and Li) for the regeneration of battery materials. Lithium is selectively recovered as lithium enriched solution with a high yield of 99%, while 96.6% cobalt remains in a complex-precipitate benefited from the high acidity and coordination role of naphthalenedisulfonic acid. The leaching of Li fits well with the logarithmic rate law model with an activation energy of 32.42 kJ/mol. Additionally, the regenerated lithium-ion battery active materials (Co3O4 anode and LiCoO2 cathode) prepared from the cobalt complex-precipitate and lithium-enriched solution exhibit excellent discharged-charged performances and rate capability. This feasible strategy assisted by multifunctional naphthalenedisulfonic acid may offer an alternative option for the simultaneous recovery of Li and Co and the rational resource utilization of spent lithium-ion batteries.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Cobalto , Electrodos , Reciclaje
13.
J Hazard Mater ; 416: 126114, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492910

RESUMEN

The explosively growing demand for electrical energy is generating a great deal of spent lithium-ion batteries (LIBs). Therefore, a simple and effective strategy for the sustainable recycling of used batteries is urgently needed to minimize chemical consumption and to reduce the associated environmental pollution. In this work, 2-naphthalenesulfonic acid is innovatively proposed for the highly-selective recovery of valuable metals. Impressively, lithium and cobalt are simultaneously separated through a single-step process, in which 99.3% of lithium is leached out as Li+ enriched solutions while 99% of cobalt is precipitated as cobalt-naphthalenesulfonate. The obtained lithium enriched solutions are recovered as Li2CO3. The cobalt-naphthalenesulfonate with high purity (99%) is ready to be transformed into Co3O4, and then generated into LiCoO2 by reacting with the above-obtained Li2CO3. The cathode material LiCoO2 with micro/nanostructures exhibits excellent electrochemical properties. Characterization results confirm the coordination structure of the extracted cobalt complex (Co(NS)2•6H2O). Finally, compared to other selective metal extraction techniques, this strategy avoids additional separation and purification processes, thus improving the recycling efficiency. Overall, this route can be extended to selectively extract valuable metals from other types of cathode materials in spent LIBs as a sustainable approach.

14.
Langmuir ; 37(6): 2205-2212, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33529028

RESUMEN

The strategy of enhancing the surface activity by preadsorption of metal ions (surface activation) is an effective way to promote the adsorption of surfactant on surfaces, which is very important in surface process engineering. However, the adsorption mechanism of surfactant (collector) on the surface preadsorbed by metal ions in the explicit solution phase is still poorly understood. Herein, the effects of hydration on the adsorption of benzohydroxamic acid (BHA) onto the oxide mineral surface before and after lead-ion activation are investigated by first-principles calculations, owing to its importance in the field of flotation. The results show that the direct adsorption of BHA on the hydrated surface is not thermodynamically allowed in the absence of metal ions. However, the adsorption of BHA onto the lead-ion-activated surface possesses a very low barrier and a very negative reaction energy difference, indicating that the adsorption of BHA on hydrated Pb2+ at cassiterite surface is very favorable in both thermodynamics and kinetics. In addition, the adsorption of BHA results in the dehydration of hydrated Pb2+. More interestingly, the surface hydroxyl groups could participate in and may promote the coordination adsorption through proton transfer. This work sheds some new lights on understanding the roles of interfacial water and the mechanisms of metal-ion surface activation.

15.
Fundam Clin Pharmacol ; 35(5): 870-881, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33481320

RESUMEN

Glutamate excitotoxicity in cerebral ischemia/reperfusion is an important cause of neurological damage. The aim of this study was to investigate the mechanism of Na+, K+-ATPase (NKA) involved in l ow concentration of ouabain (Oua, activating NKA)-induced protection of rat cerebral ischemia-reperfusion injury. The 2,3,5-triphenyltetrazolium chloride (TTC) staining and neurological deficit scores (NDS) were performed to evaluate rat cerebral injury degree respectively at 2 h, 6 h, 1 d and 3 d after reperfusion of middle cerebral artery occlusion (MCAO) 2 h in rats. NKA α1/α2 subunits and glutamate transporter-1 (GLT-1) protein expression were investigated by Western blotting. The cerebral infarct volume ratio were evidently decreased in Oua group vs MCAO/R group at 1 d and 3 d after reperfusion of 2 h MCAO in rats (*p < 0.05 ). Moreover, NDS were not significantly different (p > 0.05 ). NKA α1 was decreased at 6 h and 1 d after reperfusion of 2 h MCAO in rats, and was improved in Oua group. However, NKA α1 and α2 were increased at 3 d after reperfusion of 2 h MCAO in rats, and was decreased in Oua group. GLT-1 was decreased at 6 h, 1 d and 3 d after reperfusion of 2 h MCAO in rats, and was improved in Oua group. These data indicated that l ow concentration of Oua could improve MCAO/R injury through probably changing NKA α1/α2 and GLT-1 protein expression, then increasing GLT-1 function and promoting Glu transport and absorption, which could be useful to determine potential therapeutic strategies for patients with stroke. Low concentration of Oua improved rat MCAO/R injury via NKA α1/α2 and GLT-1.


Asunto(s)
Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media , Daño por Reperfusión/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Isquemia Encefálica/inducido químicamente , Modelos Animales de Enfermedad , Masculino , Ouabaína , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/inducido químicamente , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
16.
J Hazard Mater ; 403: 123671, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264875

RESUMEN

Bauxite residue is a kind of strong alkaline waste produced in the production of alumina. Its long-term storage poses a potential threat to the environment. With the tightening of environment policies in various countries, the strong alkalinity of bauxite residue has become a bottleneck restricting the sustainable development of aluminum industry all over the world. This review covers the composition characteristics of bauxite residue, and describes the Bayer process in detail, where emphasis is put on the formation of alkaline substances in bauxite residue and its release process in long-term storage. This review focuses on several typical processes for the management of bauxite residue alkalinity in recent decades around the world. The phase transformation mechanisms, merits and limitations, as well as application status are discussed. The potential application values of these typical methods are evaluated based on process characteristics. The large amount and varied characteristics of bauxite residue determine that it is unrealistic to solve the dealkalization problem of all bauxite residue with one method. It is recommended that the appropriate dealkalization process of bauxite residue should be selected according to the characteristics of bauxite residue and regional resources, as well as the planning of subsequent application.

17.
GigaByte ; 2021: gigabyte16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36824325

RESUMEN

Metabarcoding is a widely used method for fast characterization of microbial communities in complex environmental samples. However, the selction of sequencing platform can have a noticeable effect on the estimated community composition. Here, we evaluated the metabarcoding performance of a DNBSEQ-G400 sequencer developed by MGI Tech using 16S and internal transcribed spacer (ITS) markers to investigate bacterial and fungal mock communities, as well as the ITS2 marker to investigate the fungal community of 1144 soil samples, with additional technical replicates. We show that highly accurate sequencing of bacterial and fungal communities is achievable using DNBSEQ-G400. Measures of diversity and correlation from soil metabarcoding showed that the results correlated highly with those of different machines of the same model, as well as between different sequencing modes (single-end 400 bp and paired-end 200 bp). Moderate, but significant differences were observed between results produced with different sequencing platforms (DNBSEQ-G400 and MiSeq); however, the highest differences can be caused by selecting different primer pairs for PCR amplification of taxonomic markers. These differences suggested that care is needed while jointly analyzing metabarcoding data from differenet experiments. This study demonstrated the high performance and accuracy of DNBSEQ-G400 for short-read metabarcoding of microbial communities. Our study also produced datasets to allow further investigation of microbial diversity.

18.
Sci Total Environ ; 705: 135816, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31972947

RESUMEN

Pyrrhotite is a potential source of S2- for the sulfide precipitation of nonferrous metal ions in hydrometallurgy and waste water treatment. In this study, different pyrrhotite crystals were prepared using zero-valent iron and sulfur to determine the effects of the pyrrhotite's structure on the sulfide precipitation of copper ions. The results indicate that the sulfide precipitation of copper ions highly depends on the crystal structure and crystallinity of pyrrhotite. Monoclinic pyrrhotite was found to be the most effective for copper sulfide precipitation, which can be used for the selective precipitation of copper ions from arsenic wastewater. More than 96% copper ions were removed with little loss of arsenic, contributing to a copper product of 20.2% Cu and 0.7% As, which can serve as raw materials of copper metallurgy. X-ray diffraction analysis showed the presence of CuS and (CuxFe1-x)S, indicating that most copper ions precipitated as CuS and some copper ions entered the FeS lattice by a lattice substitution reaction. Therefore, monoclinic pyrrhotite may provide an alternative solution for the selective precipitation of copper from arsenic wastewater.

19.
China CDC Wkly ; 2(31): 579-586, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34594713

RESUMEN

What is already known about this topic? The World Health Organization's (WHO) Global Health Estimates (GHE) reported that acute hepatitis caused 9,213 deaths and 307,720 person years of disability-adjusted life years (DALYs) in 2016, and acute hepatitis B accounted for 85.81% of all DALYs among acute hepatitis types A, B, C, and E in China. What is added by this report? In China, the percent changes in years lived with disability (YLDs) due to acute hepatitis A, B, and E in groups aged 50-69 years and 70 years or more and in all age groups for acute hepatitis C were increased from 2000 to 2019. What are the implications for public health practices? Effective vaccines, interventions, and treatments are key approaches to achieve the WHO's goal of reducing new hepatitis infections by 90% and deaths by 65% between 2016 and 2030.

20.
ACS Appl Mater Interfaces ; 12(2): 2432-2444, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31845791

RESUMEN

Discovering cathode materials composed of earth-abundant elements has become the current priority for developing sodium-ion batteries (SIBs) to meet the ever-increasing demand of large-scale energy storage. Herein, for the first time, layered NaxMO2 (M = Cu, Fe, Mn) cathodes are successfully prepared by directly using concentrated chalcopyrite ores as precursors. Greatly, impurity elements like Si and Ca are found to be crucial to tailoring the phase structure of as-obtained layered oxides as a P2 or O3 type, which removes the traditional concern that the impurities may restrict the utilization of natural ores. More interestingly, a certain amount of the Ca elements remaining in the Na sites through a self-doping process endows the P2-type products with enhanced structural stability. In half-cells, P2-type NaxMO2 with self-doped Ca elements shows superior rate capability and cycling stability (56 mAh g-1 at 5 C and 90% capacity retention after 100 cycles at 1 C). In contrast, less impurity elements are favorable for O3-type oxides to achieve a high capacity of 107 mAh g-1 at 0.1 C and 84% capacity retention after 200 cycles at 2 C. This new strategy would efficiently shorten the process for preparing electrode materials and open a feasible route to construct cheap and durable SIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...