Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833376

RESUMEN

This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.

2.
Atherosclerosis ; 395: 117584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823352

RESUMEN

BACKGROUND AND AIMS: Apolipoprotein C-III (apoC-III) proteoform composition shows distinct relationships with plasma lipids and cardiovascular risk. The present study tested whether apoC-III proteoforms are associated with risk of peripheral artery disease (PAD). METHODS: ApoC-III proteoforms, i.e., native (C-III0a), and glycosylated with zero (C-III0b), one (C-III1) or two (C-III2) sialic acids, were measured by mass spectrometry immunoassay on 5,734 Multi-Ethnic Study of Atherosclerosis participants who were subsequently followed for clinical PAD over 17 years. Ankle-brachial index (ABI) was also assessed at baseline and then 3 and 10 years later in 4,830 participants. RESULTS: Higher baseline C-III0b/C-III1 and lower baseline C-III2/C-III1 were associated with slower decline in ABI (follow-up adjusted for baseline) over time, independently of cardiometabolic risk factors, and plasma triglycerides and HDL cholesterol levels (estimated difference per 1 SD was 0.31 % for both, p < 0.01). The associations between C-III2/C-III1 and changes in ABI were stronger in men (-1.21 % vs. -0.27 % in women), and in Black and Chinese participants (-0.83 % and -0.86 % vs. 0.12 % in White). Higher C-III0b/C-III1 was associated with a trend for lower risk of PAD (HR = 0.84 [95%CI: 0.67-1.04]) that became stronger after excluding participants on lipid-lowering medications (0.73 [95%CI: 0.57-0.94]). Neither change in ABI nor clinical PAD was related to total apoC-III levels. CONCLUSIONS: We found associations of apoC-III proteoform composition with changes in ABI that were independent of other risk factors, including plasma lipids. Our data further support unique properties of apoC-III proteoforms in modulating vascular health that go beyond total apoC-III levels.


Asunto(s)
Índice Tobillo Braquial , Apolipoproteína C-III , Enfermedad Arterial Periférica , Humanos , Enfermedad Arterial Periférica/sangre , Enfermedad Arterial Periférica/etnología , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/fisiopatología , Masculino , Femenino , Apolipoproteína C-III/sangre , Persona de Mediana Edad , Anciano , Estados Unidos/epidemiología , Anciano de 80 o más Años , Biomarcadores/sangre , Factores de Riesgo , Aterosclerosis/sangre , Aterosclerosis/etnología , Aterosclerosis/diagnóstico , Glicosilación , Medición de Riesgo , Factores de Tiempo
3.
BMC Biol ; 22(1): 143, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937802

RESUMEN

BACKGROUND: The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS: We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS: Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.


Asunto(s)
Elementos Transponibles de ADN , Hematopoyesis , Células Madre Hematopoyéticas , Análisis de la Célula Individual , Animales , Elementos Transponibles de ADN/genética , Análisis de la Célula Individual/métodos , Ratones , Hematopoyesis/genética , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Endoteliales/metabolismo
4.
Comput Struct Biotechnol J ; 23: 801-812, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38328004

RESUMEN

Many pathogenic bacteria use type IV secretion systems (T4SSs) to deliver effectors (T4SEs) into the cytoplasm of eukaryotic cells, causing diseases. The identification of effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but this remains a major challenge. In this study, we used the full-length embedding features generated by six pre-trained protein language models to train classifiers predicting T4SEs and compared their performance. We integrated three modules into a model called T4SEpp. The first module searched for full-length homologs of known T4SEs, signal sequences, and effector domains; the second module fine-tuned a machine learning model using data for a signal sequence feature; and the third module used the three best-performing pre-trained protein language models. T4SEpp outperformed other state-of-the-art (SOTA) software tools, achieving ∼0.98 accuracy at a high specificity of ∼0.99, based on the assessment of an independent validation dataset. T4SEpp predicted 13 T4SEs from Helicobacter pylori, including the well-known CagA and 12 other potential ones, among which eleven could potentially interact with human proteins. This suggests that these potential T4SEs may be associated with the pathogenicity of H. pylori. Overall, T4SEpp provides a better solution to assist in the identification of bacterial T4SEs and facilitates studies of bacterial pathogenicity. T4SEpp is freely accessible at https://bis.zju.edu.cn/T4SEpp.

5.
J Agric Food Chem ; 72(5): 2801-2812, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38275225

RESUMEN

Effects of different high-temperature conduction modes [high-temperature air conduction (HAC), high-temperature contact conduction (HCC), high-temperature steam conduction (HSC)]-induced glycation on the digestibility and IgG/IgE-binding ability of ovalbumin (OVA) were studied and the mechanisms were investigated. The conformation in OVA-HSC showed minimal structural changes based on circular dichroism, fluorescence, and ultraviolet spectroscopy. The degree of hydrolysis analysis indicated that glycated OVA was more resistant to digestive enzymes. Liquid chromatography-Orbitrap mass spectrometry identified 11, 14, and 15 glycation sites in OVA-HAC, OVA-HCC, and OVA-HSC, respectively. The IgG/IgE-binding ability of OVA was reduced during glycation and digestion, and the interactions among glycation, allergenicity, and digestibility were further investigated. Glycation sites masked the IgG/IgE epitopes resulting in a reduction in allergenicity. Digestion enzymes destroyed the IgG/IgE epitopes thus reducing allergenicity. Meanwhile, the glycation site in proximity to the digestion site of pepsin was observed to cause a reduction in digestibility.


Asunto(s)
Alérgenos , Reacción de Maillard , Ovalbúmina/química , Temperatura , Dicroismo Circular , Alérgenos/química , Inmunoglobulina E/metabolismo , Inmunoglobulina G/química , Epítopos
6.
J Agric Food Chem ; 72(1): 634-646, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38131198

RESUMEN

In this study, novel umami peptides were prepared from oyster (Crassostrea gigas) hydrolysates, and their umami mechanisms were investigated. Umami fractions G2 and G3 were isolated by gel filtration chromatography (GFC) and sensory evaluation. The umami scores of the G2 and G3 fractions were 7.8 ± 0.12 and 7.5 ± 0.18, respectively. 36 potential umami peptides with molecular weights below 1500 Da, E and D accounting for >30% of the peptides and iUmami-SCM > 588 were screened by peptidomics. Peptide source analysis revealed that myosin, paramyosin, and sarcoplasmic were the major precursor proteins for these peptides. The electronic tongue results demonstrated that the synthetic peptides DPNDPDMKY and NARIEELEEE possessed an umami characteristic, whereas SIEDVEESRNK and ISIEDVEESRNK possessed a saltiness characteristic. Additionally, molecular docking results indicated that the umami peptide (DPNDPDMKY, NARIEELEEE, SIEDVEESRNK, and ISIEDVEESRNK) binds to H145, S276, H388, T305, Y218, D216, and Q389 residues in the T1R3 taste receptor via a conventional hydrogen bond and a carbon-hydrogen bond. This research provides a new strategy for the screening of umami peptides.


Asunto(s)
Crassostrea , Receptores Acoplados a Proteínas G , Animales , Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Gusto , Péptidos/química , Proteómica
7.
Foods ; 13(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38201158

RESUMEN

This study aimed to diminish the reliance on water-in-oil-in-water (W/O/W) emulsions on the synthetic emulsifier polyglycerol polyricinoleate (PGPR). Considering the potential synergistic effects of proteins and PGPR, various protein types (whey, pea and chickpea protein isolates) were incorporated into the internal aqueous phase to formulate W/O/W emulsions. The effects of the combination of PGPR and protein at different ratios (5:0, 4:1, 3:2, 1:1 and 2:3) on the stability and encapsulation properties of W/O/W emulsions co-encapsulating crocin and quercetin were investigated. The findings indicated that the combination of PGPR and protein resulted in a slight reduction in the encapsulation efficiency of the emulsions, compared to that of PGPR (the control). Nonetheless, this combination significantly enhanced the physical stability of the emulsions. This result was primarily attributed to the smaller droplet sizes and elevated viscosity. These factors contributed to increased retentions of crocin (exceeding 70.04%) and quercetin (exceeding 80.29%) within the emulsions after 28 days of storage, as well as their improved bioavailability (increases of approximately 11.62~20.53% and 3.58~7.98%, respectively) during gastrointestinal digestion. Overall, combining PGPR and protein represented a viable and promising strategy for reducing the amount of PGPR and enhancing the stability of W/O/W emulsions. Notably, two plant proteins exhibited remarkable favorability in this regard. This work enriched the formulations of W/O/W emulsions and their application in the encapsulation of bioactive substances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...