Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(1): 101214, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38496303

RESUMEN

Inducible nitric oxide synthase (iNOS), regulated by nuclear factor kappa B (NF-κB), is crucial for intestinal inflammation and barrier injury in the progression of necrotizing enterocolitis (NEC). The NF-κB pathway is inhibited by S-glutathionylation of inhibitory κB kinase ß (IKKß), which can be restored by glutaredoxin-1 (Grx1). Thus, we aim to explore the role of Grx1 in experimental NEC. Wild-type (WT) and Grx1-knockout (Grx1-/-) mice were treated with an NEC-inducing regimen. Primary intestinal epithelial cells (IECs) were subjected to LPS treatment. The production of iNOS, NO, and inflammation injuries were assessed. NF-κB and involved signaling pathways were also explored. The severity of NEC was attenuated in Grx1-/- mice. Grx1 ablation promoted IKKß glutathionylation, NF-κB inactivation, and decreased iNOS, NO, and O2·- production in NEC mice. Furthermore, Grx1 ablation restrained proinflammatory cytokines and cell apoptosis, ameliorated intestinal barrier damage, and promoted proliferation in NEC mice. Grx1 ablation protected NEC through iNOS and NO inhibition, which related to S-glutathionylation of IKKß to inhibit NF-κB signaling. Grx1-related signaling pathways provide a new therapeutic target for NEC.

2.
Cancer Res ; 84(5): 659-674, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190710

RESUMEN

Epithelial-mesenchymal transition (EMT) is a fundamental cellular process frequently hijacked by cancer cells to promote tumor progression, especially metastasis. EMT is orchestrated by a complex molecular network acting at different layers of gene regulation. In addition to transcriptional regulation, posttranscriptional mechanisms may also play a role in EMT. Here, we performed a pooled CRISPR screen analyzing the influence of 1,547 RNA-binding proteins on cell motility in colon cancer cells and identified multiple core components of P-bodies (PB) as negative modulators of cancer cell migration. Further experiments demonstrated that PB depletion by silencing DDX6 or EDC4 could activate hallmarks of EMT thereby enhancing cell migration in vitro as well as metastasis formation in vivo. Integrative multiomics analysis revealed that PBs could repress the translation of the EMT driver gene HMGA2, which contributed to PB-meditated regulation of EMT. This mechanism is conserved in other cancer types. Furthermore, endoplasmic reticulum stress was an intrinsic signal that induced PB disassembly and translational derepression of HMGA2. Taken together, this study has identified a function of PBs in the regulation of EMT in cancer. SIGNIFICANCE: Systematic investigation of the influence of posttranscriptional regulation on cancer cell motility established a connection between P-body-mediated translational control and EMT, which could be therapeutically exploited to attenuate metastasis formation.


Asunto(s)
Neoplasias del Colon , Cuerpos de Procesamiento , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Detección Precoz del Cáncer , Factores de Transcripción/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Línea Celular Tumoral , Proteínas/genética
3.
Nat Commun ; 14(1): 8170, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071219

RESUMEN

Human cancer cell lines have long served as tools for cancer research and drug discovery, but the presence and the source of intra-cell-line heterogeneity remain elusive. Here, we perform single-cell RNA-sequencing and ATAC-sequencing on 42 and 39 human cell lines, respectively, to illustrate both transcriptomic and epigenetic heterogeneity within individual cell lines. Our data reveal that transcriptomic heterogeneity is frequently observed in cancer cell lines of different tissue origins, often driven by multiple common transcriptional programs. Copy number variation, as well as epigenetic variation and extrachromosomal DNA distribution all contribute to the detected intra-cell-line heterogeneity. Using hypoxia treatment as an example, we demonstrate that transcriptomic heterogeneity could be reshaped by environmental stress. Overall, our study performs single-cell multi-omics of commonly used human cancer cell lines and offers mechanistic insights into the intra-cell-line heterogeneity and its dynamics, which would serve as an important resource for future cancer cell line-based studies.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Multiómica , Línea Celular Tumoral , Epigenómica , Transcriptoma , Neoplasias/genética
4.
Genes (Basel) ; 14(8)2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37628711

RESUMEN

The use of AAV capsid libraries coupled with various selection strategies has proven to be a remarkable approach for generating novel AAVs with enhanced and desired features. The inability to reliably sequence the complete capsid gene in a high-throughput manner has been the bottleneck of capsid engineering. As a result, many library strategies are confined to localized and modest alterations in the capsid, such as peptide insertions or single variable region (VR) alterations. The caveat of short reads by means of next-generation sequencing (NGS) hinders the diversity of capsid library construction, shifting the field away from whole-capsid modifications. We generated AAV capsid shuffled libraries of naturally occurring AAVs and applied directed evolution in both mice and non-human primates (NHPs), with the goal of yielding AAVs that are compatible across both species for translational applications. We recovered DNA from the tissues of injected animal and used single molecule real-time (SMRT) sequencing to identify variants enriched in the central nervous system (CNS). We provide insights and considerations for variant identification by comparing bulk tissue sequencing to that of isolated nuclei. Our work highlights the potential advantages of whole-capsid engineering, as well as indispensable methodological improvements for the analysis of recovered capsids, including the nuclei-enrichment step and SMRT sequencing.


Asunto(s)
Proteínas de la Cápside , Cápside , Animales , Ratones , Proteínas de la Cápside/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Clonación Molecular
5.
J Interferon Cytokine Res ; 43(5): 216-228, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37103522

RESUMEN

In neonates, necrotizing enterocolitis (NEC) is a serious condition involving oxidative stress and inflammation. Remote ischemic conditioning (RIC) is a potentially useful technique to protect distant organs from the damage induced by ischemia. RIC has been verified as effective to protect against NEC; however, its mechanism is unclear. This study aimed to assess the mechanism and efficacy of RIC to treat experimental NEC in mice. Between postnatal day (P) 5 and P9, we induced NEC in C57BL/6 mice and Grx1-/- mice. Intermittent occlusion of the blood flow to the right hind limb for 4 cycles of 5 min ischemia followed by 5 min reperfusion during NEC induction on P6 and P8 was used to apply RIC. We sacrificed the mice on p9 and evaluated oxidative stress, inflammatory cytokines, proliferation, apoptosis, and PI3K/Akt/mTOR signal pathway in mice ileal tissue. RIC decreased intestinal injury and prolonged survival in NEC pups. RIC significantly inhibited inflammatory, attenuated oxidative stress, reduced apoptosis, promoted proliferation, and activated PI3K/Akt/mTOR in vivo. RIC activates the PI3K/Akt/mTOR signaling pathway to control oxidative stress and inflammation. RIC might provide a new therapeutic strategy for NEC.


Asunto(s)
Enterocolitis Necrotizante , Animales , Ratones , Enterocolitis Necrotizante/prevención & control , Enterocolitis Necrotizante/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL , Isquemia , Inflamación/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Oxidación-Reducción , Modelos Animales de Enfermedad
6.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36951961

RESUMEN

Spastic paraplegia 50 (SPG50) is an ultrarare childhood-onset neurological disorder caused by biallelic loss-of-function variants in the AP4M1 gene. SPG50 is characterized by progressive spastic paraplegia, global developmental delay, and subsequent intellectual disability, secondary microcephaly, and epilepsy. We preformed preclinical studies evaluating an adeno-associated virus (AAV)/AP4M1 gene therapy for SPG50 and describe in vitro studies that demonstrate transduction of patient-derived fibroblasts with AAV2/AP4M1, resulting in phenotypic rescue. To evaluate efficacy in vivo, Ap4m1-KO mice were intrathecally (i.t.) injected with 5 × 1011, 2.5 × 1011, or 1.25 × 1011 vector genome (vg) doses of AAV9/AP4M1 at P7-P10 or P90. Age- and dose-dependent effects were observed, with early intervention and higher doses achieving the best therapeutic benefits. In parallel, three toxicology studies in WT mice, rats, and nonhuman primates (NHPs) demonstrated that AAV9/AP4M1 had an acceptable safety profile up to a target human dose of 1 × 1015 vg. Of note, similar degrees of minimal-to-mild dorsal root ganglia (DRG) toxicity were observed in both rats and NHPs, supporting the use of rats to monitor DRG toxicity in future i.t. AAV studies. These preclinical results identify an acceptably safe and efficacious dose of i.t.-administered AAV9/AP4M1, supporting an investigational gene transfer clinical trial to treat SPG50.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Ratas , Ratones , Animales , Niño , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/terapia , Terapia Genética , Dependovirus/genética , Vectores Genéticos , Paraplejía/genética , Paraplejía/terapia
7.
Front Aging Neurosci ; 14: 1052249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570530

RESUMEN

Introduction: Heat-clearing and detoxifying Chinese medicines have been documented to have anti-Alzheimer's disease (AD) activities according to the accumulated clinical experience and pharmacological research results in recent decades. In this study, Fibraurea recisa Pierre (FRP), the classic type of Heat-clearing and detoxifying Chinese medicine, was selected as the object of research. Methods: 12 components with anti-AD activities were identified in FRP by a variety of methods, including silica gel column chromatography, multiple databases, and literature searches. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Consequently, it was found that these 12 compounds could act on 235 anti-AD targets, of which AKT and other targets were the core targets. Meanwhile, among these 235 targets, 71 targets were identified to be significantly correlated with the pathology of amyloid beta (Aß) and Tau. Results and discussion: In view of the analysis results of the network of active ingredients and targets, it was observed that palmatine, berberine, and other alkaloids in FRP were the key active ingredients for the treatment of AD. Further, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that the neuroactive ligand-receptor interaction pathway and PI3K-Akt signaling pathway were the most significant signaling pathways for FRP to play an anti-AD role. Findings in our study suggest that multiple primary active ingredients in FRP can play a multitarget anti-AD effect by regulating key physiological processes such as neurotransmitter transmission and anti-inflammation. Besides, key ingredients such as palmatine and berberine in FRP are expected to be excellent leading compounds of multitarget anti-AD drugs.

8.
EBioMedicine ; 85: 104314, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36374771

RESUMEN

BACKGROUND: Batten disease is characterized by cognitive and motor impairment, retinal degeneration, and seizures leading to premature death. Recent studies have shown efficacy for a gene therapy approach for CLN7 Batten disease. This gene therapy approach is promising to treat cognitive and motor impairment, but is not likely to delay vision loss. Additionally, the natural progression of retinal degeneration in CLN7 Batten disease patients is not well-known. METHODS: We performed visual examinations on five patients with CLN7 Batten disease and found that patients were far progressed in degeneration within their first five years of life. To better understand the disease progression, we characterized the retina of a preclinical mouse model of CLN7 Batten disease, through the age at which mice present with paralysis and premature death. FINDINGS: We found that this preclinical model shows signs of photoreceptor to bipolar synaptic defects early, and displays rod-cone dystrophy with late loss of bipolar cells. This vision loss could be followed not only via histology, but using clinical live imaging similar to that used in human patients. INTERPRETATION: Natural history studies of rare paediatric neurodegenerative conditions are complicated by the rapid degeneration and limited availability of patients. Characterization of degeneration in the preclinical model allows for future experiments to better understand the mechanisms underlying the retinal disease progression in order to find therapeutics to treat patients, as well as to evaluate these therapeutic options for future human clinical trials. FUNDING: Van Sickle Family Foundation Inc., NIHP30EY030413, Morton Fichtenbaum Charitable Trust and 5T32GM131945-03.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Degeneración Retiniana , Humanos , Niño , Animales , Ratones , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Lipofuscinosis Ceroideas Neuronales/patología , Degeneración Retiniana/etiología , Degeneración Retiniana/terapia , Retina/patología , Terapia Genética , Trastornos de la Visión/terapia , Progresión de la Enfermedad , Modelos Animales de Enfermedad
9.
World J Clin Cases ; 10(18): 6156-6162, 2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35949846

RESUMEN

BACKGROUND: Ornithine transcarbamylase deficiency (OTCD) is an X-linked inherited disorder and characterized by marked elevation of blood ammonia. The goal of treatment is to minimize the neurological damage caused by hyperammonemia. OTCD can be cured by liver transplantation (LT). Post-transplant patients can discontinue anti- hyperammonemia agents and consume a regular diet without the risk of developing hyperammonemia. The neurological damage caused by hyperammonemia is almost irreversible. CASE SUMMARY: An 11.7-year-old boy presented with headache, vomiting, and altered consciousness. The patient was diagnosed with late-onset OTCD. After nitrogen scavenging treatment and a protein-free diet, ammonia levels were reduced to normal on the third day of admission. Nevertheless, the patient remained in a moderate coma. After discussion, LT was performed. Following LT, the patient's blood ammonia and biochemical indicators stabilized in the normal range, he regained consciousness, and his nervous system function significantly recovered. Two months after LT, blood amino acids and urine organic acids were normal, and brain magnetic resonance imaging showed a decrease in subcortical lesions. CONCLUSION: LT can significantly improve partial neurological impairment caused by late-onset OTCD hyperammonemic encephalopathy, and LT can be actively considered when early drug therapy is ineffective.

10.
Nat Commun ; 13(1): 4680, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945219

RESUMEN

DPF3, a component of the SWI/SNF chromatin remodeling complex, has been associated with clear cell renal cell carcinoma (ccRCC) in a genome-wide association study. However, the functional role of DPF3 in ccRCC development and progression remains unknown. In this study, we demonstrate that DPF3a, the short isoform of DPF3, promotes kidney cancer cell migration both in vitro and in vivo, consistent with the clinical observation that DPF3a is significantly upregulated in ccRCC patients with metastases. Mechanistically, DPF3a specifically interacts with SNIP1, via which it forms a complex with SMAD4 and p300 histone acetyltransferase (HAT), the major transcriptional regulators of TGF-ß signaling pathway. Moreover, the binding of DPF3a releases the repressive effect of SNIP1 on p300 HAT activity, leading to the increase in local histone acetylation and the activation of cell movement related genes. Overall, our findings reveal a metastasis-promoting function of DPF3, and further establish the link between SWI/SNF components and ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Transducción de Señal , Carcinoma de Células Renales/genética , Cromatina , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Renales/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Pharmacol Res ; 182: 106285, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662627

RESUMEN

Vinigrol is a natural diterpenoid with unprecedented chemical structure, driving great efforts into its total synthesis in the past decades. Despite anti-hypertension and anti-clot ever reported, comprehensive investigations on bioactions and molecular mechanisms of Vinigrol are entirely missing. Here we firstly carried out a complete functional prediction of Vinigrol using a transcriptome-based strategy coupled with multiple bioinformatic analyses and identified "anti-cancer" as the most prominent biofunction ahead of anti-hypertension and anti-depression/psychosis. Broad cytotoxicity was subsequently confirmed on multiple cancer types. Further mechanistic investigation on several breast cancer cells revealed that its anti-cancer effect was mainly through activating PERK/eIF2α arm of unfolded protein response (UPR) and subsequent non-apoptotic cell death independent of caspase activities. The other two branches of UPR, IRE1α and ATF6, were functionally irrelevant to Vinigrol-induced cell death. Using CRISPR/Cas9-based gene activation, repression, and knockout systems, we identified the essential contribution of ATF4 and DDIT3, not ATF6, to the death process. This study unraveled a broad anti-cancer function of Vinigrol and its underlying targets and regulatory mechanisms. It paved the way for further inspection on the structure-efficacy relationship of the whole compound family, making them a novel cluster of PERK-specific stress activators for experimental and clinical uses.


Asunto(s)
Factor de Transcripción Activador 4 , Neoplasias de la Mama , Diterpenos , Factor de Transcripción CHOP , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Diterpenos/farmacología , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Femenino , Humanos , Proteínas Serina-Treonina Quinasas , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo
12.
Dev Cell ; 57(10): 1271-1283.e4, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35512700

RESUMEN

Drosophila has long been a successful model organism in multiple biomedical fields. Spatial gene expression patterns are critical for the understanding of complex pathways and interactions, whereas temporal gene expression changes are vital for studying highly dynamic physiological activities. Systematic studies in Drosophila are still impeded by the lack of spatiotemporal transcriptomic information. Here, utilizing spatial enhanced resolution omics-sequencing (Stereo-seq), we dissected the spatiotemporal transcriptomic changes of developing Drosophila with high resolution and sensitivity. We demonstrated that Stereo-seq data can be used for the 3D reconstruction of the spatial transcriptomes of Drosophila embryos and larvae. With these 3D models, we identified functional subregions in embryonic and larval midguts, uncovered spatial cell state dynamics of larval testis, and revealed known and potential regulons of transcription factors within their topographic background. Our data provide the Drosophila research community with useful resources of organism-wide spatiotemporally resolved transcriptomic information across developmental stages.


Asunto(s)
Drosophila , Transcriptoma , Animales , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/metabolismo , Masculino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
13.
Nucleic Acids Res ; 50(5): e26, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35191504

RESUMEN

Alternative polyadenylation (APA) plays an important role in gene regulation. With the recent application of novel sequencing technology in APA profiling, an ever-increasing number of APA genes/sites have been identified. However, the phenotypic relevance of most of these APA isoforms remains elusive, which is largely due to the lack of a convenient genetics tool for APA interference. To address this issue, herein, an efficient method is developed based on the CRISPR-dCas13 system, termed as CRISPR-iPAS. Out of eight different dCas13 proteins, Porphyromonas gulae (Pgu) dCas13b, is identified as the most effective one in blocking the usage of the polyadenylation site (PAS). With guide RNAs targeting at core regulatory elements, dPguCas13b enabled APA regulation of endogenous genes with different APA types, including tandem 3'UTR, alternative terminal exon, as well as intronic PAS. Finally, we demonstrated that the proposed APA perturbation tool could be used to investigate the functional relevance of APA isoforms.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas Genéticas , Poliadenilación , Regiones no Traducidas 3' , Regulación de la Expresión Génica , Intrones/genética
15.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025759

RESUMEN

Neuronal ceroid lipofuscinosis type 7 (CLN7) disease is a lysosomal storage disease caused by mutations in the facilitator superfamily domain containing 8 (MFSD8) gene, which encodes a membrane-bound lysosomal protein, MFSD8. To test the effectiveness and safety of adeno-associated viral (AAV) gene therapy, an in vitro study demonstrated that AAV2/MFSD8 dose dependently rescued lysosomal function in fibroblasts from a CLN7 patient. An in vivo efficacy study using intrathecal administration of AAV9/MFSD8 to Mfsd8- /- mice at P7-P10 or P120 with high or low dose led to clear age- and dose-dependent effects. A high dose of AAV9/MFSD8 at P7-P10 resulted in widespread MFSD8 mRNA expression, tendency of amelioration of subunit c of mitochondrial ATP synthase accumulation and glial fibrillary acidic protein immunoreactivity, normalization of impaired behaviors, doubled median life span, and extended normal body weight gain. In vivo safety studies in rodents concluded that intrathecal administration of AAV9/MFSD8 was safe and well tolerated. In summary, these results demonstrated that the AAV9/MFSD8 vector is both effective and safe in preclinical models.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Lipofuscinosis Ceroideas Neuronales , Animales , Dependovirus , Terapia Genética , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia
16.
Genomics Proteomics Bioinformatics ; 20(3): 483-495, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662629

RESUMEN

Alternative polyadenylation (APA) is a crucial step in post-transcriptional regulation. Previous bioinformatic studies have mainly focused on the recognition of polyadenylation sites (PASs) in a given genomic sequence, which is a binary classification problem. Recently, computational methods for predicting the usage level of alternative PASs in the same gene have been proposed. However, all of them cast the problem as a non-quantitative pairwise comparison task and do not take the competition among multiple PASs into account. To address this, here we propose a deep learning architecture, Deep Regulatory Code and Tools for Alternative Polyadenylation (DeeReCT-APA), to quantitatively predict the usage of all alternative PASs of a given gene. To accommodate different genes with potentially different numbers of PASs, DeeReCT-APA treats the problem as a regression task with a variable-length target. Based on a convolutional neural network-long short-term memory (CNN-LSTM) architecture, DeeReCT-APA extracts sequence features with CNN layers, uses bidirectional LSTM to explicitly model the interactions among competing PASs, and outputs percentage scores representing the usage levels of all PASs of a gene. In addition to the fact that only our method can quantitatively predict the usage of all the PASs within a gene, we show that our method consistently outperforms other existing methods on three different tasks for which they are trained: pairwise comparison task, highest usage prediction task, and ranking task. Finally, we demonstrate that our method can be used to predict the effect of genetic variations on APA patterns and sheds light on future mechanistic understanding in APA regulation. Our code and data are available at https://github.com/lzx325/DeeReCT-APA-repo.


Asunto(s)
Aprendizaje Profundo , Poliadenilación , Regulación de la Expresión Génica , Redes Neurales de la Computación , Biología Computacional/métodos , Regiones no Traducidas 3'
17.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969779

RESUMEN

Alternative splicing is ubiquitous, but the mechanisms underlying its pattern of evolutionary divergence across mammalian tissues are still underexplored. Here, we investigated the cis-regulatory divergences and their relationship with tissue-dependent trans-regulation in multiple tissues of an F1 hybrid between two mouse species. Large splicing changes between tissues are highly conserved and likely reflect functional tissue-dependent regulation. In particular, micro-exons frequently exhibit this pattern with high inclusion levels in the brain. Cis-divergence of splicing appears to be largely non-adaptive. Although divergence is in general associated with higher densities of sequence variants in regulatory regions, events with high usage of the dominant isoform apparently tolerate more mutations, explaining why their exon sequences are highly conserved but their intronic splicing site flanking regions are not. Moreover, we demonstrate that non-adaptive mutations are often masked in tissues where accurate splicing likely is more important, and experimentally attribute such buffering effect to trans-regulatory splicing efficiency.


Asunto(s)
Empalme Alternativo/genética , Evolución Molecular , Flujo Genético , Animales , Bases de Datos Genéticas , Exones/genética , Femenino , Humanos , Masculino , Ratones , Fenotipo , ARN Mensajero/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética
18.
Mol Ther Methods Clin Dev ; 23: 158-168, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34703839

RESUMEN

SURF1 (surfeit locus protein 1)-related Leigh syndrome is an early-onset neurodegenerative disorder, characterized by reduction in complex IV activity, resulting in disrupted mitochondrial function. Currently, there are no treatment options available. To test our hypothesis that adeno-associated viral vector serotype 9 (AAV9)/human SURF1 (hSURF1) gene replacement therapy can provide a potentially meaningful and long-term therapeutic benefit, we conducted preclinical efficacy studies using SURF1 knockout mice and safety evaluations with wild-type (WT) mice. Our data indicate that with a single intrathecal (i.t.) administration, our treatment partially and significantly rescued complex IV activity in all tissues tested, including liver, brain, and muscle. Accordingly, complex IV content (examined via MT-CO1 protein expression level) also increased with our treatment. In a separate group of mice, AAV9/hSURF1 mitigated the blood lactic acidosis induced by exhaustive exercise at 9 months post-dosing. A toxicity study in WT mice showed no adverse effects in either the in-life portion or after microscopic examination of major tissues up to a year following the same treatment regimen. Taken together, our data suggest a single dose, i.t. administration of AAV9/hSURF1 is safe and effective in improving biochemical abnormalities induced by SURF1 deficiency with potential applicability for SURF1-related Leigh syndrome patients.

19.
iScience ; 24(8): 102857, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34278249

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, causes the coronavirus disease 19 pandemic. During the viral replication and transcription, the RNA-dependent RNA polymerase "jumps" along the genome template, resulting in discontinuous negative-stranded transcripts. Although the sense-mRNA architectures of SARS-CoV-2 were reported, its negative strand was unexplored. Here, we deeply sequenced both strands of RNA and found SARS-CoV-2 transcription is strongly biased to form the sense strand with variable transcription efficiency for different genes. During negative strand synthesis, numerous non-canonical fusion transcripts are also formed, driven by 3-15 nt sequence homology scattered along the genome but more prone to be inhibited by SARS-CoV-2 RNA polymerase inhibitor remdesivir. The drug also represses more of the negative than the positive strand synthesis as supported by a mathematic simulation model and experimental quantifications. Overall, this study opens new sights into SARS-CoV-2 biogenesis and may facilitate the antiviral vaccine development and drug design.

20.
Brain Res Bull ; 175: 136-149, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34284074

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by irreversible cognitive deficits and memory dysfunction. Dopamine is the most abundant catecholaminergic neurotransmitter in the brain which regulates motivation, reward, movement, and cognition. Recently, increasing evidences have shown that dopaminergic system is disturbed in AD conditions, and pharmacological interventions targeting dopamine D1 receptor (DRD1) exhibit certain therapeutic benefits in AD models. However, the underlying link between DRD1 and AD remains elusive. This study sought to test whether the selective DRD1 agonist A-68930 could improve streptozotocin (STZ)-induced cognitive impairment in mice. Here we found that A-68930 treatment through intraperitoneal injection efficiently alleviated STZ-induced cognitive deficits in mice. Moreover, our mechanism researches revealed that the DRD1 signaling induced by A-68930 significantly rescued STZ-induced mitochondrial biogenesis deficit, mitochondrial dysfunction, Aß overexpression, and tau phosphorylation in mice hippocampus and cortex and SH-SY5Y cells, which may be mediated through stimulating AMPK/PGC-1α pathway. This study indicates that DRD1 agonist A-68930 can improve STZ-induced cognitive deficits and mitochondrial dysfunction in vivo and in vitro, and DRD1 may represent an appropriate target candidate for AD drug development.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cromanos/uso terapéutico , Trastornos del Conocimiento/prevención & control , Trastornos del Conocimiento/psicología , Diabetes Mellitus Experimental/tratamiento farmacológico , Agonistas de Dopamina/uso terapéutico , Mitocondrias/metabolismo , Receptores de Dopamina D1/agonistas , Precursor de Proteína beta-Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/genética , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/psicología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Biogénesis de Organelos , Receptores de Dopamina D1/genética , Proteínas tau/biosíntesis , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA